Glycan array: Difference between revisions

Content deleted Content added
Applications: ce, consistent sp, refpunct, links
Tags: Mobile edit Mobile web edit Advanced mobile edit
m top: replaced: spatially-defined → spatially defined
 
(2 intermediate revisions by one other user not shown)
Line 1:
'''Glycan arrays''',<ref name="Carbohydrate Microarrays">{{cite journal|vauthors=Carroll GT, Wang D, Turro NJ, Koberstein JT|title=Photochemical Micropatterning of Carbohydrates on a Surface|journal=Langmuir|date=2006|volume=22|issue=6 |pages=2899–2905|doi=10.1021/la0531042|pmid=16519501 }}</ref> like that offered by the [[Consortium for Functional Glycomics]] (CFG), [[National Center for Functional Glycomics]] (NCFG) and Z Biotech, contain [[carbohydrate]] compounds that can be screened with [[lectin]]s, [[antibodies]] or [[cell receptor]]s to define carbohydrate specificity and identify [[ligand]]s. Glycan array screening works in much the same way as other microarrays used, for instance, to study gene expression ([[DNA microarrays]]) or protein interaction ([[protein microarray]]s).
 
Glycan arrays are composed of various [[oligosaccharide]]s and [[polysaccharide]]s immobilisedimmobilized on a solid support in a spatially- defined arrangement.<ref name="Glycan arrays: recent advances and future challenges">{{cite journal|vauthors=Oyelaran O, Gildersleeve JC|title=Glycan arrays: recent advances and future challenges|journal=Curr Opin Chem Biol|date=Oct 2009|volume=13|issue=4|pages=406–413|doi=10.1016/j.cbpa.2009.06.021|pmid=19625207|pmc=2749919 }}</ref> This technology provides the means of studying [[glycan–protein interaction]]s in a [[high-throughput biology|high-throughput]] environment. These natural or synthetic (see [[carbohydrate synthesis]]) glycans are then incubated with any glycan-binding protein such as lectins, [[cell surface receptor]]s or possibly a whole organism such as a [[virus]]. Binding is quantified using [[fluorescence]]-based detection methods. Certain types of glycan microarrays can even be re-used for multiple samples using a method called microwave assisted wet-erase.<ref>{{cite journal |last1=Mehta |first1=Akul Y |last2=Tilton |first2=Catherine A |last3=Muerner |first3=Lukas |last4=von Gunten |first4=Stephan |last5=Heimburg-Molinaro |first5=Jamie |last6=Cummings |first6=Richard D |title=Reusable glycan microarrays using a microwave assisted wet-erase (MAWE) process |journal=Glycobiology |date=14 November 2023 |volume=34 |issue=2 |doi=10.1093/glycob/cwad091 |pmid=37962922|pmc=10969520 }}</ref>
 
==Applications==
Glycan arrays have been used to characterize previously unknown [[biochemical]] interactions. For example, photo-generated glycan arrays have been used to characterize the [[immunogenic]] properties of a [[tetrasaccharide]] found on the surface of [[anthrax]] spores.<ref name="Anthrax">{{cite journal|vauthors=Wang D, Carroll GT, Turro NJ, Koberstein JT, Kováč P, Saksena R, Adamo R, Herzenberg LA, Herzenberg LA, Steinman L|title=Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium|journal=Proteomics|date=2007|volume=7|issue=2 |pages=180–184|doi=10.1002/pmic.200600478|doi-access=free|pmid=17205603 }}</ref> Hence, glycan array technology can be used to study the specificity of [[host–pathogen interaction]]s.<ref name="Glycan arrays as tools for infectious disease research">{{cite journal|vauthors=Geissner A, Anish C, Seeberger PH|title=Glycan arrays as tools for infectious disease research|journal=Curr Opin Chem Biol|date=Feb 2014|volume=18|pages=38–45|doi=10.1016/j.cbpa.2013.11.013|pmid=24534751}}</ref>
<ref name="Glycan arrays as tools for infectious disease research">{{cite journal|vauthors=Geissner A, Anish C, Seeberger PH|title=Glycan arrays as tools for infectious disease research|journal=Curr Opin Chem Biol|date=Feb 2014|volume=18|pages=38–45|doi=10.1016/j.cbpa.2013.11.013|pmid=24534751}}</ref>
 
Early on, glycan arrays were proven useful in determining the specificity of the [[hemagglutinin (influenza)|hemagglutinin]] of the [[influenza A virus]] binding to the host and distinguishing across different strains of flu (including avian from mammalian). This was shown with CFG arrays<ref name="Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus">{{cite journal|vauthors=Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA|title=Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus|journal=Science|date=Apr 2006|volume=312|issue=5772|pages=404–410|doi=10.1126/science.1124513|pmid=16543414|bibcode=2006Sci...312..404S|doi-access=}}</ref> as well as customized arrays.<ref name="Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray">{{cite journal|vauthors=Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y, Chai W, Campanero-Rhodes MA, Zhang Y, Eickmann M, Kiso M, Hay A, Matrosovich M, Feizi T|title=Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray|journal=Nat Biotechnol|date=Sep 2009 |volume=27|issue=9|pages=797–799|doi=10.1038/nbt0909-797|pmid=19741625|pmc=3771066}}</ref>