Machine-learned interatomic potential: Difference between revisions

Content deleted Content added
Remove advertisement.
Tags: Mobile edit Mobile web edit
Tlaram (talk | contribs)
m Copy editing
 
(One intermediate revision by one other user not shown)
Line 1:
{{Short description|Interatomic potentials constructed by machine learning programs}}
 
'''Machine-learned interatomic potentials''' ('''MLIPs'''), or simply '''machine learning potentials''' ('''MLPs'''), are [[interatomic potential]]s constructed byusing [[machine learning]] programs. Beginning in the 1990s, researchers have employed such programs to construct interatomic potentials by mapping atomic structures to their potential energies. These potentials are referred to as '''MLIPs''' or '''MLPs'''.
 
Such machine learning potentials promised to fill the gap between [[density functional theory]], a highly accurate but computationally intensive modelling method, and empirically derived or intuitively-approximated potentials, which were far lighter computationally but substantially less accurate. Improvements in [[artificial intelligence]] technology heightened the accuracy of MLPs while lowering their computational cost, increasing the role of machine learning in fitting potentials.<ref name="ML">{{cite journal|last1=Kocer|last2=Ko|last3=Behler|first1=Emir|first2=Tsz Wai|first3=Jorg|journal=Annual Review of Physical Chemistry|title=Neural Network Potentials: A Concise Overview of Methods|date=2022|volume=73|pages=163–86|doi=10.1146/annurev-physchem-082720-034254 |pmid=34982580 |bibcode=2022ARPC...73..163K |doi-access=free|arxiv=2107.03727}}</ref><ref>{{cite journal|last1=Blank|first1=TB|last2=Brown|first2=SD|last3=Calhoun|last4=Doren|first4=DJ|first3=AW|date=1995|title=Neural network models of potential energy surfaces|journal=Journal of Chemical Physics|volume=103|number=10|pages=4129–37|doi=10.1063/1.469597 |bibcode=1995JChPh.103.4129B }}</ref>
Line 14:
 
== Gaussian Approximation Potential (GAP) ==
One popular class of machine-learned interatomic potential is the Gaussian Approximation Potential (GAP),<ref>{{Cite journal |last1=Bartók |first1=Albert P. |last2=Payne |first2=Mike C. |last3=Kondor |first3=Risi |last4=Csányi |first4=Gábor |date=2010-04-01 |title=Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons |url=https://link.aps.org/doi/10.1103/PhysRevLett.104.136403 |journal=Physical Review Letters |volume=104 |issue=13 |pages=136403 |doi=10.1103/PhysRevLett.104.136403|pmid=20481899 |arxiv=0910.1019 |bibcode=2010PhRvL.104m6403B }}</ref><ref>{{Cite journal |last1=Bartók |first1=Albert P. |last2=De |first2=Sandip |last3=Poelking |first3=Carl |last4=Bernstein |first4=Noam |last5=Kermode |first5=James R. |last6=Csányi |first6=Gábor |last7=Ceriotti |first7=Michele |date=December 2017 |title=Machine learning unifies the modeling of materials and molecules |journal=Science Advances |language=en |volume=3 |issue=12 |pages=e1701816 |doi=10.1126/sciadv.1701816 |issn=2375-2548 |pmc=5729016 |pmid=29242828|arxiv=1706.00179 |bibcode=2017SciA....3E1816B }}</ref><ref>{{Cite web |title=Gaussian approximation potential – Machine learning atomistic simulation of materials and molecules |url=https://gap-ml.org/ |access-date=2024-04-04 |language=en-US}}</ref> which combines compact descriptors of local atomic environments<ref>{{Cite journal |last1=Bartók |first1=Albert P. |last2=Kondor |first2=Risi |last3=Csányi |first3=Gábor |date=2013-05-28 |title=On representing chemical environments |url=https://link.aps.org/doi/10.1103/PhysRevB.87.184115 |journal=Physical Review B |volume=87 |issue=18 |pages=184115 |doi=10.1103/PhysRevB.87.184115|arxiv=1209.3140 |bibcode=2013PhRvB..87r4115B }}</ref> with Gaussian process regression<ref>{{Cite book |last1=Rasmussen |first1=Carl Edward |title=Gaussian processes for machine learning |last2=Williams |first2=Christopher K. I. |date=2008 |publisher=MIT Press |isbn=978-0-262-18253-9 |edition=3. print |series=Adaptive computation and machine learning |___location=Cambridge, Mass.}}</ref> to machine learn the [[potential energy surface]] of a given system. To date, the GAP framework has been used to successfully develop a number of MLIPs for various systems, including for elemental systems such as [[Carboncarbon]],<ref>{{cite journal | last=Rowe | first=Patrick | last2=Deringer | first2=Volker L. | last3=Gasparotto | first3=Piero | last4=Csányi | first4=Gábor | last5=Michaelides | first5=Angelos | title=An accurate and transferable machine learning potential for carbon | journal=The Journal of Chemical Physics | volume=153 | issue=3 | date=2020-07-21 | issn=0021-9606 | doi=10.1063/5.0005084 | doi-access=free | url=http://arxiv.org/pdf/2006.13655| arxiv=2006.13655 }}</ref><ref>{{Cite journal |last1=Deringer |first1=Volker L. |last2=Csányi |first2=Gábor |date=2017-03-03 |title=Machine learning based interatomic potential for amorphous carbon |url=https://link.aps.org/doi/10.1103/PhysRevB.95.094203 |journal=Physical Review B |volume=95 |issue=9 |pages=094203 |doi=10.1103/PhysRevB.95.094203|arxiv=1611.03277 |bibcode=2017PhRvB..95i4203D }}</ref> [[Siliconsilicon]],<ref>{{Cite journal |last1=Bartók |first1=Albert P. |last2=Kermode |first2=James |last3=Bernstein |first3=Noam |last4=Csányi |first4=Gábor |date=2018-12-14 |title=Machine Learning a General-Purpose Interatomic Potential for Silicon |url=https://link.aps.org/doi/10.1103/PhysRevX.8.041048 |journal=Physical Review X |volume=8 |issue=4 |pages=041048 |doi=10.1103/PhysRevX.8.041048|arxiv=1805.01568 |bibcode=2018PhRvX...8d1048B }}</ref> [[Phosphorusphosphorus]],<ref>{{Cite journal |last1=Deringer |first1=Volker L. |last2=Caro |first2=Miguel A. |last3=Csányi |first3=Gábor |date=2020-10-29 |title=A general-purpose machine-learning force field for bulk and nanostructured phosphorus |journal=Nature Communications |language=en |volume=11 |issue=1 |pages=5461 |doi=10.1038/s41467-020-19168-z |issn=2041-1723 |pmc=7596484 |pmid=33122630|bibcode=2020NatCo..11.5461D }}</ref> and [[Tungstentungsten]],<ref>{{Cite journal |last1=Szlachta |first1=Wojciech J. |last2=Bartók |first2=Albert P. |last3=Csányi |first3=Gábor |date=2014-09-24 |title=Accuracy and transferability of Gaussian approximation potential models for tungsten |url=https://link.aps.org/doi/10.1103/PhysRevB.90.104108 |journal=Physical Review B |volume=90 |issue=10 |pages=104108 |doi=10.1103/PhysRevB.90.104108|bibcode=2014PhRvB..90j4108S |url-access=subscription }}</ref> as well as for multicomponent systems such as Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub><ref>{{Cite journal |last1=Mocanu |first1=Felix C. |last2=Konstantinou |first2=Konstantinos |last3=Lee |first3=Tae Hoon |last4=Bernstein |first4=Noam |last5=Deringer |first5=Volker L. |last6=Csányi |first6=Gábor |last7=Elliott |first7=Stephen R. |date=2018-09-27 |title=Modeling the Phase-Change Memory Material, Ge 2 Sb 2 Te 5, with a Machine-Learned Interatomic Potential |url=https://pubs.acs.org/doi/10.1021/acs.jpcb.8b06476 |journal=The Journal of Physical Chemistry B |language=en |volume=122 |issue=38 |pages=8998–9006 |doi=10.1021/acs.jpcb.8b06476 |pmid=30173522 |issn=1520-6106|url-access=subscription }}</ref> and [[Austenitic stainless steel|austenitic]] [[stainless steel]], Fe<sub>7</sub>Cr<sub>2</sub>Ni.<ref>{{Cite journal |last1=Shenoy |first1=Lakshmi |last2=Woodgate |first2=Christopher D. |last3=Staunton |first3=Julie B. |last4=Bartók |first4=Albert P. |last5=Becquart |first5=Charlotte S. |last6=Domain |first6=Christophe |last7=Kermode |first7=James R. |date=2024-03-22 |title=<nowiki>Collinear-spin machine learned interatomic potential for ${\mathrm{Fe}}_{7}{\mathrm{Cr}}_{2}\mathrm{Ni}$ alloy</nowiki> |url=https://link.aps.org/doi/10.1103/PhysRevMaterials.8.033804 |journal=Physical Review Materials |volume=8 |issue=3 |pages=033804 |doi=10.1103/PhysRevMaterials.8.033804|arxiv=2309.08689 }}</ref>
 
==References==