Content deleted Content added
Jasper Deng (talk | contribs) not used Tags: Mobile edit Mobile web edit Advanced mobile edit |
m Bot: http → https |
||
(19 intermediate revisions by 13 users not shown) | |||
Line 8:
In 1960, [[Anatoly Karatsuba]] discovered [[Karatsuba multiplication]], unleashing a flood of research into fast multiplication algorithms. This method uses three multiplications rather than four to multiply two two-digit numbers. (A variant of this can also be used to multiply [[complex numbers]] quickly.) Done [[recursively]], this has a time complexity of <math>O(n^{\log_2 3})</math>. Splitting numbers into more than two parts results in [[Toom-Cook multiplication]]; for example, using three parts results in the '''Toom-3''' algorithm. Using many parts can set the exponent arbitrarily close to 1, but the constant factor also grows, making it impractical.
In 1968, the [[Schönhage-Strassen algorithm]], which makes use of a [[Fourier transform]] over a [[Modulus (modular arithmetic)|modulus]], was discovered. It has a time complexity of <math>O(n\log n\log\log n)</math>. In 2007, [[Martin Fürer]] proposed an algorithm with complexity <math>O(n\log n 2^{\Theta(\log^* n)})</math>. In 2014, Harvey, [[Joris van der Hoeven]], and Lecerf proposed one with complexity <math>O(n\log n 2^{3\log^* n})</math>, thus making the [[implicit constant]] explicit; this was improved to <math>O(n\log n 2^{2\log^* n})</math> in 2018. Lastly, in 2019, Harvey and van der Hoeven came up with
Integer multiplication algorithms can also be used to multiply polynomials by means of the method of [[Kronecker substitution]].
Line 32:
====Other notations====
In some countries such as [[Germany]], the above multiplication is depicted similarly but with the original product kept horizontal and computation starting with the first digit of the multiplier:<ref>{{Cite web |title=Multiplication |url=
23958233 · 5830
Line 39:
191665864
71874699
00000000
———————————————
139676498390
Line 104:
|}
followed by addition to obtain 442, either in a single sum (see right), or through forming the row-by-row totals
: (300 + 40) + (90 + 12) = 340 + 102 = 442. This calculation approach (though not necessarily with the explicit grid arrangement) is also known as the [[partial products algorithm]]. Its essence is the calculation of the simple multiplications separately, with all addition being left to the final gathering-up stage.
Line 258 ⟶ 259:
====History of quarter square multiplication====
In prehistoric time, quarter square multiplication involved [[Floor and ceiling functions|floor function]]; that some sources<ref>{{citation |title= Quarter Tables Revisited: Earlier Tables, Division of Labor in Table Construction, and Later Implementations in Analog Computers |last=McFarland |first=David|url=
Antoine Voisin published a table of quarter squares from 1 to 1000 in 1817 as an aid in multiplication. A larger table of quarter squares from 1 to 100000 was published by Samuel Laundy in 1856,<ref>{{Citation |title=Reviews |journal=The Civil Engineer and Architect's Journal |year=1857 |pages=54–55 |url=https://books.google.com/books?id=gcNAAAAAcAAJ&pg=PA54 |postscript=.}}</ref> and a table from 1 to 200000 by Joseph Blater in 1888.<ref>{{Citation|title=Multiplying with quarter squares |first=Neville |last=Holmes| journal=The Mathematical Gazette |volume=87 |issue=509 |year=2003 |pages=296–299 |jstor=3621048|postscript=.|doi=10.1017/S0025557200172778 |s2cid=125040256 }}</ref>
Line 272 ⟶ 273:
{{unsolved|computer science|What is the fastest algorithm for multiplication of two <math>n</math>-digit numbers?}}
A line of research in [[theoretical computer science]] is about the number of single-bit arithmetic operations necessary to multiply two <math>n</math>-bit integers. This is known as the [[computational complexity]] of multiplication. Usual algorithms done by hand have asymptotic complexity of <math>O(n^2)</math>, but in 1960 [[Anatoly Karatsuba]] discovered that better complexity was possible (with the [[Karatsuba algorithm]]).<ref>{{cite web | url=https://youtube.com/watch?v=AMl6EJHfUWo | title= The Genius Way Computers Multiply Big Numbers| website=[[YouTube]]| date= 2 January 2025}}</ref>
Currently, the algorithm with the best computational complexity is a 2019 algorithm of [[David Harvey (mathematician)|David Harvey]] and [[Joris van der Hoeven]], which uses the strategies of using [[number-theoretic transform]]s introduced with the [[Schönhage–Strassen algorithm]] to multiply integers using only <math>O(n\log n)</math> operations.<ref>{{cite journal | last1 = Harvey | first1 = David | last2 = van der Hoeven | first2 = Joris | author2-link = Joris van der Hoeven | doi = 10.4007/annals.2021.193.2.4 | issue = 2 | journal = [[Annals of Mathematics]] | mr = 4224716 | pages = 563–617 | series = Second Series | title = Integer multiplication in time <math>O(n \log n)</math> | volume = 193 | year = 2021| s2cid = 109934776 | url = https://hal.archives-ouvertes.fr/hal-02070778v2/file/nlogn.pdf }}</ref> This is conjectured to be the best possible algorithm, but lower bounds of <math>\Omega(n\log n)</math> are not known.
Line 325 ⟶ 326:
By exploring patterns after expansion, one see following:
<math display="block">\begin{alignat}{5} (x_1 B^{ m} + x_0) (y_1 B^{m} + y_0) (z_1 B^{ m} + z_0) (a_1 B^{ m} + a_0) &=
\end{alignat}</math>
Each summand is associated to a unique binary number from 0 to
Line 336 ⟶ 338:
If we express this in fewer terms, we get:
<math
</math>, where <math> c(i,j) </math> means digit in number i at position j. Notice that <math> c(i,j) \in \{0,1\} </math>
<math display="block">
\begin{align}
z_{0} &= \prod_{j=1}^N x_{j,0}
\\
z_{N} &= \prod_{j=1}^N x_{j,1}▼
\\
▲z_{N} = \prod_{j=1}^N x_{j,1}
z_{N-1} &= \prod_{j=1}^N (x_{j,0} + x_{j,1}) - \sum_{i \ne N-1}^{N} z_i▼
\end{align}
▲z_{N-1} = \prod_{j=1}^N (x_{j,0} + x_{j,1}) - \sum_{i \ne N-1}^{N} z_i
</math>
Line 365 ⟶ 363:
{{Main|Schönhage–Strassen algorithm}}
[[File:Integer multiplication by FFT.svg|thumb|350px|Demonstration of multiplying 1234 × 5678 = 7006652 using fast Fourier transforms (FFTs). [[Number-theoretic transform]]s in the integers modulo 337 are used, selecting 85 as an 8th root of unity. Base 10 is used in place of base 2<sup>''w''</sup> for illustrative purposes.]]
Every number in base B, can be written as a polynomial:
<math display="block"> X = \sum_{i=0}^N {x_iB^i} </math>
Furthermore, multiplication of two numbers could be thought of as a product of two polynomials:
<math display="block">XY = (\sum_{i=0}^N {x_iB^i})(\sum_{j=0}^N {y_iB^j}) </math>
Because,for <math> B^k </math>: <math>c_k =\sum_{(i,j):i+j=k} {a_ib_j} = \sum_{i=0}^k {a_ib_{k-i}} </math>,
Line 380 ⟶ 377:
By using fft (fast fourier transformation) with convolution rule, we can get
<math display="block"> \hat{f}(a * b) = \hat{f}(\sum_{i=0}^k {a_ib_{k-i}}) = \hat{f}(a)
is the corresponding coefficient in fourier space. This can also be written as: <math>\mathrm{fft}(a * b) = \mathrm{fft}(a)
Line 387 ⟶ 384:
only consist of one unique term per coefficient:
<math display="block"> \hat{f}(x^n) = \left(\frac{i}{2\pi}\right)^n \delta^{(n)} </math> and
<math display="block"> \hat{f}(a\, X(\xi) + b\, Y(\xi)) = a\, \hat{X}(\xi) + b\, \hat{Y}(\xi)</math>
Convolution rule: <math> \hat{f}(X * Y) = \ \hat{f}(X) </math> ● <math> \hat{f}(Y) </math>▼
▲* Convolution rule: <math> \hat{f}(X * Y) = \ \hat{f}(X)
We have reduced our convolution problem
Line 398 ⟶ 393:
By finding ifft (polynomial interpolation), for each <math>c_k </math>, one get the desired coefficients.
Algorithm uses divide and conquer strategy, to divide problem to subproblems.
Line 405 ⟶ 400:
==== History ====
The algorithm was invented by [[Volker Strassen|Strassen]] (1968). It was made practical and theoretical guarantees were provided in 1971 by [[Arnold Schönhage|Schönhage]] and Strassen resulting in the [[Schönhage–Strassen algorithm]].<ref name="schönhage">{{cite journal |first1=A. |last1=Schönhage |first2=V. |last2=Strassen |title=Schnelle Multiplikation großer Zahlen |journal=Computing |volume=7 |issue= 3–4|pages=281–292 |date=1971 |doi=10.1007/BF02242355 |s2cid=9738629 |url=https://link.springer.com/article/10.1007/BF02242355|url-access=subscription }}</ref>
=== Further improvements ===
In 2007 the [[asymptotic complexity]] of integer multiplication was improved by the Swiss mathematician [[Martin Fürer]] of Pennsylvania State University to
In 2014, Harvey, [[Joris van der Hoeven]] and Lecerf<ref>{{cite journal
Line 427 ⟶ 422:
===Lower bounds===
There is a trivial lower bound of [[Big O notation#Family of Bachmann–Landau notations|Ω]](''n'') for multiplying two ''n''-bit numbers on a single processor; no matching algorithm (on conventional machines, that is on Turing equivalent machines) nor any sharper lower bound is known. The [[Hartmanis–Stearns conjecture]] would imply that <math>O(n)</math> cannot be achieved. Multiplication lies outside of [[ACC0|AC<sup>0</sup>[''p'']]] for any prime ''p'', meaning there is no family of constant-depth, polynomial (or even subexponential) size circuits using AND, OR, NOT, and MOD<sub>''p''</sub> gates that can compute a product. This follows from a constant-depth reduction of MOD<sub>''q''</sub> to multiplication.<ref>{{cite book |first1=Sanjeev |last1=Arora |first2=Boaz |last2=Barak |title=Computational Complexity: A Modern Approach |publisher=Cambridge University Press |date=2009 |isbn=978-0-521-42426-4 |url={{GBurl|8Wjqvsoo48MC|pg=PR7}}}}</ref> Lower bounds for multiplication are also known for some classes of [[branching program]]s.<ref>{{cite journal |first1=F. |last1=Ablayev |first2=M. |last2=Karpinski |title=A lower bound for integer multiplication on randomized ordered read-once branching programs |journal=Information and Computation |volume=186 |issue=1 |pages=78–89 |date=2003 |doi=10.1016/S0890-5401(03)00118-4 |url=https://core.ac.uk/download/pdf/82445954.pdf}}</ref>
==Complex number multiplication==
Line 457 ⟶ 452:
This algorithm uses only three multiplications, rather than four, and five additions or subtractions rather than two. If a multiply is more expensive than three adds or subtracts, as when calculating by hand, then there is a gain in speed. On modern computers a multiply and an add can take about the same time so there may be no speed gain. There is a trade-off in that there may be some loss of precision when using floating point.
For [[fast Fourier transform]]s (FFTs) (or any [[Linear map|linear transformation]]) the complex multiplies are by constant coefficients ''c'' + ''di'' (called [[twiddle factor]]s in FFTs), in which case two of the additions (''d''−''c'' and ''c''+''d'') can be precomputed. Hence, only three multiplies and three adds are required.<ref>{{cite journal |first1=P. |last1=Duhamel |first2=M. |last2=Vetterli |title=Fast Fourier transforms: A tutorial review and a state of the art |journal=Signal Processing |volume=19 |issue=4 |pages=259–299 See Section 4.1 |date=1990 |doi=10.1016/0165-1684(90)90158-U |bibcode=1990SigPr..19..259D |url=https://core.ac.uk/download/pdf/147907050.pdf}}</ref> However, trading off a multiplication for an addition in this way may no longer be beneficial with modern [[floating-point unit]]s.<ref>{{cite journal |first1=S.G. |last1=Johnson |first2=M. |last2=Frigo |title=A modified split-radix FFT with fewer arithmetic operations |journal=IEEE Trans. Signal Process. |volume=55 |issue= 1|pages=111–9 See Section IV |date=2007 |doi=10.1109/TSP.2006.882087 |bibcode=2007ITSP...55..111J |s2cid=14772428 |url=https://www.fftw.org/newsplit.pdf }}</ref>
==Polynomial multiplication==
Line 501 ⟶ 496:
* [[Horner scheme]] for evaluating of a polynomial
* [[Logarithm]]
* [[Matrix multiplication algorithm]]
* [[Mental calculation]]
* [[Number-theoretic transform]]
Line 520 ⟶ 516:
===Basic arithmetic===
* [
* [
* [
===Advanced algorithms===
* [
{{Number-theoretic algorithms}}
|