Content deleted Content added
→Recent limits: general c/e in this section |
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 7:
Experimental efforts to detect WIMPs include the search for products of WIMP annihilation, including [[gamma ray]]s, [[neutrino]]s and [[cosmic ray]]s in nearby galaxies and galaxy clusters; direct detection experiments designed to measure the collision of WIMPs with [[Atomic nucleus|nuclei]] in the laboratory, as well as attempts to directly produce WIMPs in colliders, such as the [[Large Hadron Collider]] at [[CERN]].
Because [[supersymmetry|supersymmetric]] extensions of the Standard Model of particle physics readily predict a new particle with these properties, this apparent coincidence is known as the "'''WIMP miracle'''", and a stable supersymmetric partner has long been a prime WIMP candidate.<ref>{{cite journal |last1=Jungman |first1=Gerard |last2=Kamionkowski |first2=Marc |last3=Griest |first3=Kim |year=1996 |title=Supersymmetric dark matter |journal=Physics Reports |volume=267 |issue=5–6 |pages=195–373 |s2cid=119067698 |arxiv=hep-ph/9506380 |bibcode=1996PhR...267..195J |doi=10.1016/0370-1573(95)00058-5}}</ref> However, in the early 2010s, results from [[Dark matter#Direct detection|direct-detection]] experiments and the lack of evidence for supersymmetry at the [[Large Hadron Collider]] (LHC) experiment<ref>{{cite news |url=http://news.discovery.com/space/lhc-discovery-maims-supersymmetry-again-130724.htm |title=LHC discovery maims supersymmetry again |website=Discovery News |archive-date=2016-03-13 |access-date=2014-06-05 |archive-url=https://web.archive.org/web/20160313000505/http://news.discovery.com/space/lhc-discovery-maims-supersymmetry-again-130724.htm |url-status=dead }}</ref><ref>{{cite arXiv |last=Craig |first=Nathaniel |year=2013 |title=The State of Supersymmetry after Run I of the LHC |class=hep-ph |eprint=1309.0528}}</ref> have cast doubt on the simplest WIMP hypothesis.<ref>{{cite journal |last1=Fox |first1=Patrick J. |last2=Jung |first2=Gabriel |last3=Sorensen |first3=Peter |last4=Weiner |first4=Neal |year=2014 |title=Dark matter in light of LUX |journal=Physical Review D |volume=89 |issue=10 |page=103526 |arxiv=1401.0216 |bibcode=2014PhRvD..89j3526F |doi=10.1103/PhysRevD.89.103526}}</ref>
== Theoretical framework and properties ==
Line 34:
* Large mass compared to standard particles (WIMPs with sub-[[Electron volt|GeV]]/''c''<sup>2</sup> masses may be considered to be [[light dark matter]]).
Because of their lack of electromagnetic interaction with normal matter, WIMPs would be invisible through normal electromagnetic observations. Because of their large mass, they would be relatively slow moving and therefore "cold".<ref>{{cite
== As dark matter ==
Line 79:
=== Recent limits ===
[[File:Direct Detection Constraints.png
There are currently no confirmed detections of dark matter from direct detection experiments, with the strongest exclusion limits coming from the [[Large Underground Xenon experiment|LUX]] and [[Cryogenic Dark Matter Search|SuperCDMS]] experiments, as shown in figure 2.
Line 114:
=== Future of direct detection ===
[[File:WIMPsLZexperiment2023.png
The 2020s should see the emergence of several multi-tonne mass direct detection experiments, which will probe WIMP-nucleus cross sections orders of magnitude smaller than the current state-of-the-art sensitivity. Examples of such next-generation experiments are LUX-ZEPLIN (LZ) and XENONnT, which are multi-tonne liquid xenon experiments, followed by DARWIN, another proposed liquid xenon direct detection experiment of 50–100 tonnes.<ref>{{cite arXiv |eprint=1110.0103|last1= Malling|first1= D. C.|title= After LUX: The LZ Program |display-authors= etal |class= astro-ph.IM|year= 2011}}</ref><ref>{{cite journal |last1=Baudis |first1=Laura |title=DARWIN: dark matter WIMP search with noble liquids |journal=J. Phys. Conf. Ser. |date=2012 |volume=375 |issue=1 |page=012028 |doi=10.1088/1742-6596/375/1/012028 |arxiv=1201.2402|bibcode=2012JPhCS.375a2028B |s2cid=30885844 }}</ref>
|