Content deleted Content added
m Reverted edits by 2600:6C5A:407F:81B8:2EDA:565E:A46E:C5EB (talk) (AV) |
Undid revision 1305550508 by EulerianTrail (talk) the sentence doesn't make sense with "simply" moved like that; the second form is the simple one |
||
(7 intermediate revisions by 7 users not shown) | |||
Line 3:
[[File:6n-graf.svg|thumb|A graph with six vertices and seven edges]]
In [[discrete mathematics]], particularly in [[graph theory]], a '''graph''' is a structure consisting of a [[Set (mathematics)|set]] of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called ''[[Vertex (graph theory)|vertices]]'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line'').<ref
The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing money is not necessarily reciprocated.
Line 158:
== Properties of graphs ==
{{see also|Glossary of graph theory|Graph property}}
Two
The graph with only one vertex and no edges is called the ''trivial graph''. A graph with only vertices and no edges is known as an ''edgeless graph''. The graph with no vertices and no edges is sometimes called the ''[[null graph]]'' or ''empty graph'', but the terminology is not consistent and not all mathematicians allow this object.
|