Content deleted Content added
→Link function: dark mode |
Maxeto0910 (talk | contribs) No edit summary Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
(One intermediate revision by one other user not shown) | |||
Line 1:
{{Short description|Class of statistical models}}
{{Distinguish|
{{Regression bar}}
Line 10:
Ordinary linear regression predicts the [[expected value]] of a given unknown quantity (the ''response variable'', a [[random variable]]) as a [[linear combination]] of a set of observed values (''predictors''). This implies that a constant change in a predictor leads to a constant change in the response variable (i.e. a ''linear-response model''). This is appropriate when the response variable can vary, to a good approximation, indefinitely in either direction, or more generally for any quantity that only varies by a relatively small amount compared to the variation in the predictive variables, e.g. human heights.
However, these assumptions are inappropriate for some types of response variables. For example, in cases where the response variable is expected to be always positive and varying over a wide range, constant input changes lead to geometrically (i.e. exponentially) varying, rather than constantly varying, output changes. As an example, suppose a linear prediction model learns from some data (perhaps primarily drawn from large beaches) that a 10 degree temperature decrease would lead to 1,000 fewer people visiting the beach. This model is unlikely to generalize well over
Similarly, a model that predicts a probability of making a yes/no choice (a [[Bernoulli distribution|Bernoulli variable]]) is even less suitable as a linear-response model, since probabilities are bounded on both ends (they must be between 0 and 1). Imagine, for example, a model that predicts the likelihood of a given person going to the beach as a function of temperature. A reasonable model might predict, for example, that a change in 10 degrees makes a person two times more or less likely to go to the beach. But what does "twice as likely" mean in terms of a probability? It cannot literally mean to double the probability value (e.g. 50% becomes 100%, 75% becomes 150%, etc.). Rather, it is the ''[[odds ratio|odds]]'' that are doubling: from 2:1 odds, to 4:1 odds, to 8:1 odds, etc. Such a model is a ''log-odds or [[Logistic regression|logistic]] model''.
|