Variation of parameters: Difference between revisions

Content deleted Content added
Bluelink 1 book for verifiability. [goog]) #IABot (v2.0) (GreenC bot
m External links: fix dead link
 
(24 intermediate revisions by 17 users not shown)
Line 1:
{{Differential equations}}
 
{{Short description|Procedure for solving differential equations}}In [[mathematics]], '''variation of parameters''', also known as '''variation of constants''', is a general method to solve [[inhomogeneous differential equation|inhomogeneous]] [[linear differential equation|linear]] [[ordinary differential equation]]s.
 
For first-order inhomogeneous [[linear differential equationsequation]]s it is usually possible to find solutions via [[integrating factor]]s or [[method of undetermined coefficients|undetermined coefficients]] with considerably less effort, although those methods leverage [[heuristic]]s that involve guessing and don'tdo not work for all inhomogeneous linear differential equations.
 
Variation of parameters extends to linear [[partial differential equations]] as well, specifically to inhomogeneous problems for linear evolution equations like the [[heat equation]], [[wave equation]], and [[vibrating plate]] equation. In this setting, the method is more often known as [[Duhamel's principle]], named after [[Jean-Marie Duhamel]] (1797–1872) who first applied the method to solve the inhomogeneous heat equation. Sometimes variation of parameters itself is called Duhamel's principle and vice versa.
 
== Intuitive explanationHistory ==
Consider the equation of the forced dispersionless spring, in suitable units:
:<math>x''(t) + x(t) = F(t).</math>
Here {{math|''x''}} is the displacement of the spring from the equilibrium {{math|''x'' {{=}} 0}}, and {{math|''F''(''t'')}} is an external applied force that depends on time. When the external force is zero, this is the homogeneous equation (whose solutions are linear combinations of sines and cosines, corresponding to the spring oscillating with constant total energy).
 
The method of variation of parameters was first sketched by the Swiss mathematician [[Leonhard Euler]] (1707–1783), and later completed by the Italian-French mathematician [[Joseph Louis Lagrange|Joseph-Louis Lagrange]] (1736–1813).<ref>See:
We can construct the solution physically, as follows. Between times <math>t=s</math> and <math>t=s+ds</math>, the momentum corresponding to the solution has a net change <math>F(s)\,ds</math> (see: [[Impulse (physics)]]). A solution to the inhomogeneous equation, at the present time {{math|''t'' > 0}}, is obtained by linearly superposing the solutions obtained in this manner, for {{math|''s''}} going between 0 and {{math|t}}.
* [[Forest Ray Moulton]], ''An Introduction to Celestial Mechanics'', 2nd ed. (first published by the Macmillan Company in 1914; reprinted in 1970 by Dover Publications, Inc., Mineola, New York), [https://books.google.com/books?id=URPSrBntwdAC&pg=PA431 page 431].
* Edgar Odell Lovett (1899) [https://books.google.com/books?id=j7sKAAAAIAAJ&pg=PA47 "The theory of perturbations and Lie's theory of contact transformations,"] ''The Quarterly Journal of Pure and Applied Mathematics'', vol. 30, pages 47–149; see especially pages 48–61.</ref>
 
A forerunner of the method of variation of a celestial body's orbital elements appeared in Euler's work in 1748, while he was studying the mutual perturbations of Jupiter and Saturn.<ref>Euler, L. (1748) [https://books.google.com/books?id=GtA6Ea1NlqwC&pg=PA1 "Recherches sur la question des inégalités du mouvement de Saturne et de Jupiter, sujet proposé pour le prix de l'année 1748, par l’Académie Royale des Sciences de Paris"] [Investigations on the question of the differences in the movement of Saturn and Jupiter; this subject proposed for the prize of 1748 by the Royal Academy of Sciences (Paris)] (Paris, France: G. Martin, J.B. Coignard, & H.L. Guerin, 1749).</ref> In his 1749 study of the motions of the earth, Euler obtained differential equations for the orbital elements.<ref>Euler, L. (1749) [https://books.google.com/books?id=xA0_AAAAYAAJ&pg=PA289 "Recherches sur la précession des équinoxes, et sur la nutation de l’axe de la terre,"] ''Histoire'' [or ''Mémoires'' ] ''de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 289–325 [published in 1751].</ref> In 1753, he applied the method to his study of the motions of the moon.<ref>Euler, L. (1753) [https://archive.org/details/theoriamotuslun00eulegoog Theoria motus lunae: exhibens omnes ejus inaequalitates ... ] [The theory of the motion of the moon: demonstrating all of its inequalities ... ] (Saint Petersburg, Russia: Academia Imperialis Scientiarum Petropolitanae [Imperial Academy of Science (St. Petersburg)], 1753).</ref>
The homogeneous initial-value problem, representing a small impulse <math>F(s)\,ds</math> being added to the solution at time <math>t=s</math>, is
:<math>x''(t)+x(t)=0,\quad x(s)=0,\ x'(s)=F(s)\,ds.</math>
The unique solution to this problem is easily seen to be <math>x(t) = F(s)\sin(t-s)\,ds</math>. The linear superposition of all of these solutions is given by the integral:
:<math>x(t) = \int_0^t F(s)\sin(t-s)\,ds.</math>
 
To verify that this satisfies the required equation:
:<math>x'(t)=\int_0^t F(s)\cos(t-s)\,ds</math>
:<math>x''(t) = F(t) - \int_0^tF(s)\sin(t-s)\,ds = F(t)-x(t),</math>
as required (see: [[Leibniz integral rule]]).
 
The general method of variation of parameters allows for solving an inhomogeneous linear equation
:<math>Lx(t)=F(t)</math>
by means of considering the second-order linear differential operator ''L'' to be the net force, thus the total impulse imparted to a solution between time ''s'' and ''s''+''ds'' is ''F''(''s'')''ds''. Denote by <math>x_s </math> the solution of the homogeneous initial value problem
:<math>Lx(t)=0, \quad x(s)=0, x'(s)=F (s)\,ds. </math>
Then a particular solution of the inhomogeneous equation is
:<math>x (t)=\int_0^t x_s (t)\,ds,</math>
the result of linearly superposing the infinitesimal homogeneous solutions. There are generalizations to higher order linear differential operators.
 
In practice, variation of parameters usually involves the fundamental solution of the homogeneous problem, the infinitesimal solutions <math>x_s </math> then being given in terms of explicit linear combinations of linearly independent fundamental solutions. In the case of the forced dispersionless spring, the kernel <math>\sin(t-s)=\sin t\cos s - \sin s\cos t </math> is the associated decomposition into fundamental solutions.
 
Lagrange first used the method in 1766.<ref>Lagrange, J.-L. (1766) [https://books.google.com/books?id=XwVNAAAAMAAJ&pg=RA1-PA179 “Solution de différens problèmes du calcul integral,”] ''Mélanges de philosophie et de mathématique de la Société royale de Turin'', vol. 3, pages 179–380.</ref> Between 1778 and 1783, he further developed the method in two series of memoirs: one on variations in the motions of the planets<ref>See:
== History ==
* Lagrange, J.-L. (1781) [https://books.google.com/books?id=UitRAAAAYAAJ&pg=PA199 "Théorie des variations séculaires des élémens des Planetes. Premiere partie, ... ,"] ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 199–276.
 
* Lagrange, J.-L. (1782) [https://books.google.com/books?id=kW9PAAAAYAAJ&pg=PA169 "Théorie des variations séculaires des élémens des Planetes. Seconde partie, ... ,"] ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 169–292.
The method of variation of parameters was introduced by the Swiss-born mathematician [[Leonhard Euler]] (1707–1783) and completed by the Italian-French mathematician [[Joseph Louis Lagrange|Joseph-Louis Lagrange]] (1736–1813).<ref>See:
* Lagrange, J.-L. (1783) [https://books.google.com/books?id=Lz7fp3OnutEC&pg=PA161 "Théorie des variations périodiques des mouvemens des Planetes. Premiere partie, ... ,"] ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 161–190.</ref> and another on determining the orbit of a comet from three observations.<ref>See:
* [[Forest Ray Moulton]], ''An Introduction to Celestial Mechanics'', 2nd ed. (first published by the Macmillan Company in 1914; reprinted in 1970 by Dover Publications, Inc., Mineola, New York), [https://books.google.com/books?id=URPSrBntwdAC&pg=PA431#v=onepage&q&f=false page 431].
* Lagrange, J.-L. (1778) [https://books.google.com/books?id=F90_AAAAYAAJ&pg=PA60-IA55 "Sur le probleme de la détermination des orbites des cometes d'après trois observations, premier mémoire"] (On the problem of determining the orbits of comets from three observations, first memoir), ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 111–123 [published in 1780].
* Edgar Odell Lovett (1899) [https://books.google.com/books?id=j7sKAAAAIAAJ&pg=PA47#v=onepage&q&f=false "The theory of perturbations and Lie's theory of contact transformations,"] ''The Quarterly Journal of Pure and Applied Mathematics'', vol. 30, pages 47–149; see especially pages 48–61.</ref> A forerunner of the method of variation of a celestial body's orbital elements appeared in Euler's work in 1748, while he was studying the mutual perturbations of Jupiter and Saturn.<ref>Euler, L. (1748) [https://books.google.com/books?id=GtA6Ea1NlqwC&pg=PA1#v=onepage&q&f=false "Recherches sur la question des inégalités du mouvement de Saturne et de Jupiter, sujet proposé pour le prix de l'année 1748, par l’Académie Royale des Sciences de Paris"] [Investigations on the question of the differences in the movement of Saturn and Jupiter; this subject proposed for the prize of 1748 by the Royal Academy of Sciences (Paris)] (Paris, France: G. Martin, J.B. Coignard, & H.L. Guerin, 1749).</ref> In his 1749 study of the motions of the earth, Euler obtained differential equations for the orbital elements;<ref>Euler, L. (1749) [https://books.google.com/books?id=xA0_AAAAYAAJ&pg=PA289#v=onepage&q&f=false "Recherches sur la précession des équinoxes, et sur la nutation de l’axe de la terre,"] ''Histoire'' [or ''Mémoires'' ] ''de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 289–325 [published in 1751].</ref> and in 1753 he applied the method to his study of the motions of the moon.<ref>Euler, L. (1753) [https://archive.org/details/theoriamotuslun00eulegoog Theoria motus lunae: exhibens omnes ejus inaequalitates ... ] [The theory of the motion of the moon: demonstrating all of its inequalities ... ] (Saint Petersburg, Russia: Academia Imperialis Scientiarum Petropolitanae [Imperial Academy of Science (St. Petersburg)], 1753).</ref> Lagrange first used the method in 1766.<ref>Lagrange, J.-L. (1766) [https://books.google.com/books?id=XwVNAAAAMAAJ&pg=RA1-PA179#v=onepage&q&f=false “Solution de différens problèmes du calcul integral,”] ''Mélanges de philosophie et de mathématique de la Société royale de Turin'', vol. 3, pages 179–380.</ref> Between 1778 and 1783, Lagrange further developed the method both in a series of memoirs on variations in the motions of the planets<ref>See:
* Lagrange, J.-L. (17811778) [https://books.google.com/books?id=UitRAAAAYAAJF90_AAAAYAAJ&pg=PA199#v=onepage&q&f=falsePA60-IA68 "ThéorieSur desle variationsprobleme séculairesde la détermination des élémensorbites des Planetes.cometes d'après Premieretrois partieobservations, ...second ,mémoire"], ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 199–276124–161 [published in 1780].
* Lagrange, J.-L. (17821783) [httpshttp://booksgallica.googlebnf.comfr/books?id=kW9PAAAAYAAJ&pg=PA169#v=onepage&q&f=falseark:/12148/bpt6k229223s/f498.image "ThéorieSur desle variationsprobleme séculairesde desla élémensdétermination des Planetes.orbites des Secondecometes partie,d'après trois observations... Troisième mémoire, dans lequel on donne une solution directe et générale du problème."], ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 169–292296–332 [published in 1785].</ref> During 1808–1810, Lagrange gave the method of variation of parameters its final form in a third series of papers.<ref>See:
* Lagrange, J.-L. (1783) [https://books.google.com/books?id=Lz7fp3OnutEC&pg=PA161#v=onepage&q&f=false "Théorie des variations périodiques des mouvemens des Planetes. Premiere partie, ... ,"] ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 161–190.</ref> and in another series of memoirs on determining the orbit of a comet from three observations.<ref>See:
* Lagrange, J.-L. (1778) [https://books.google.com/books?id=F90_AAAAYAAJ&pg=PA60-IA55#v=onepage&q&f=false "Sur le probleme de la détermination des orbites des cometes d'après trois observations, premier mémoire"] (On the problem of determining the orbits of comets from three observations, first memoir), ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 111–123 [published in 1780].
* Lagrange, J.-L. (1778) [https://books.google.com/books?id=F90_AAAAYAAJ&pg=PA60-IA68#v=onepage&q&f=false "Sur le probleme de la détermination des orbites des cometes d'après trois observations, second mémoire"], ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 124–161 [published in 1780].
* Lagrange, J.-L. (1783) [http://gallica.bnf.fr/ark:/12148/bpt6k229223s/f498.image "Sur le probleme de la détermination des orbites des cometes d'après trois observations. Troisième mémoire, dans lequel on donne une solution directe et générale du problème."], ''Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-lettres'' (Berlin), pages 296–332 [published in 1785].</ref> (Euler and Lagrange applied this method to nonlinear differential equations and that, instead of varying the coefficients of linear combinations of solutions to homogeneous equations, they varied the constants of the unperturbed motions of the celestial bodies.<ref>Michael Efroimsky (2002) [https://arxiv.org/pdf/astro-ph/0212245.pdf "Implicit gauge symmetry emerging in the ''N''-body problem of celestial mechanics,"] page 3.</ref>) During 1808–1810, Lagrange gave the method of variation of parameters its final form in a series of papers.<ref>See:
* Lagrange, J.-L. (1808) “Sur la théorie des variations des éléments des planètes et en particulier des variations des grands axes de leurs orbites,” ''Mémoires de la première Classe de l’Institut de France''. Reprinted in: Joseph-Louis Lagrange with Joseph-Alfred Serret, ed., ''Oeuvres de Lagrange'' (Paris, France: Gauthier-Villars, 1873), vol. 6, [http://gallica.bnf.fr/ark:/12148/bpt6k229225j/f715.image pages 713–768].
* Lagrange, J.-L. (1809) “Sur la théorie générale de la variation des constantes arbitraires dans tous les problèmes de la méchanique,” ''Mémoires de la première Classe de l’Institut de France''. Reprinted in: Joseph-Louis Lagrange with Joseph-Alfred Serret, ed., ''Oeuvres de Lagrange'' (Paris, France: Gauthier-Villars, 1873), vol. 6, [http://gallica.bnf.fr/ark:/12148/bpt6k229225j/f773 pages 771–805].
* Lagrange, J.-L. (1810) “Second mémoire sur la théorie générale de la variation des constantes arbitraires dans tous les problèmes de la méchanique, ... ,” ''Mémoires de la première Classe de l’Institut de France''. Reprinted in: Joseph-Louis Lagrange with Joseph-Alfred Serret, ed., ''Oeuvres de Lagrange'' (Paris, France: Gauthier-Villars, 1873), vol. 6, [http://gallica.bnf.fr/ark:/12148/bpt6k229225j/f811.image pages 809–816].</ref> The central result of his study was the system of planetary equations in the form of Lagrange, which described the evolution of the Keplerian parameters (orbital elements) of a perturbed orbit.
 
== Description of method ==
In his description of evolving orbits, Lagrange set a reduced two-body problem to have been an unperturbed solution, and presumed that all perturbations come from the gravitational pull which the bodies other than the primary exert at the secondary (orbiting) body. Accordingly, his method implied that the perturbations depend solely on the position of the secondary, but not on its velocity. In the 20th century, celestial mechanics began to consider interactions which depend on both positions and velocities (relativistic corrections, atmospheric drag, inertial forces). Therefore, the method of variation of parameters used by Lagrange was extended to the situation with velocity-dependent forces.<ref>See:
* Michael Efroimsky (2005) [http://onlinelibrary.wiley.com/doi/10.1196/annals.1370.016/abstract "Gauge Freedom in Orbital Mechanics." ANYAS, Vol. 1065, pp. 346–374 (2005)]
* Michael Efroimsky and Peter Goldreich (2004) [http://www.aanda.org/index.php?option=com_article&access=standard&Itemid=129&url=/articles/aa/abs/2004/09/aa0058/aa0058.html "Gauge symmetry of the ''N''-body problem of Celestial Mechanics." Astronomy and Astrophysics, Vol. 415, pp. 1187–1199. (2004)]
* Michael Efroimsky and Peter Goldreich (2003) [http://scitation.aip.org/content/aip/journal/jmp/44/12/10.1063/1.1622447 "Gauge symmetry of the ''N''-body problem in the Hamilton–Jacobi approach." Journal of Mathematical Physics, Vol. 44, pp. 5958–5977. (2003)]</ref>
 
Given an ordinary non-homogeneous [[linear differential equation]] of order ''n''
== Description of method ==
Given an ordinary non-homogeneous linear differential equation of order ''n''
 
{{NumBlk|:|<math>y^{(n)}(x) + \sum_{i=0}^{n-1} a_i(x) y^{(i)}(x) = b(x).\quad\quad {\rm (i)}</math>|{{EquationRef|i}}}}
 
Let <math>y_1(x), \ldots, y_n(x)</math> be a [[FundamentalBasis system#Homogeneous(linear equationsalgebra)|fundamentalbasis]] systemof the [[vector space]] of solutions of the corresponding homogeneous equation
 
{{NumBlk|:|<math>y^{(n)}(x) + \sum_{i=0}^{n-1} a_i(x) y^{(i)}(x) = 0.\quad\quad {\rm (ii)}</math>|{{EquationRef|ii}}}}
 
Then a [[ordinaryOrdinary differential equation#Solutions|particular solution]] to the non-homogeneous equation is given by
 
{{NumBlk|:|<math>y_p(x) = \sum_{i=1}^{n} c_i(x) y_i(x)\quad\quad {\rm (iii)}</math>|{{EquationRef|iii}}}}
 
where the <math>c_i(x)</math> are differentiable functions which are assumed to satisfy the conditions
 
{{NumBlk|:|<math>\sum_{i=1}^n c_i'(x) y_i^{(j)}(x) = 0, \quad j = 0,\ldots, n-2.\quad\quad {\rm (iv)}</math>|{{EquationRef|iv}}}}
 
Starting with ({{EquationNote|iii}}), repeated differentiation combined with repeated use of ({{EquationNote|iv}}) gives
{{NumBlk|:|<math>y_p^{(j)}(x) = \sum_{i=1}^{n} c_i(x) y_i^{(j)}(x), \quad j=0,\ldots,n-1 \, .</math>|{{EquationRef|v}}}}
\quad j=0,\ldots,n-1 \, \mathrm{.} \quad\quad {\rm (v)}</math>
 
One last differentiation gives
 
{{NumBlk|:|<math>y_p^{(n)}(x)=\sum_{i=1}^n c_i'(x)y_i^{(n-1)}(x)+\sum_{i=1}^n c_i(x) y_i^{(n)}(x) \, \mathrm{.</math>|{{EquationRef|vi}}}}
\quad\quad{\rm (vi)}</math>
 
By substituting ({{EquationNote|iii}}) into ({{EquationNote|i}}) and applying ({{EquationNote|v}}) and ({{EquationNote|vi}}) it follows that
{{NumBlk|:|<math>\sum_{i=1}^n c_i'(x) y_i^{(n-1)}(x) = b(x).\quad\quad {\rm (vii)}</math>|{{EquationRef|vii}}}}
 
The linear system ({{EquationNote|iv}} and {{EquationNote|vii}}) of ''n'' equations can then be solved using [[Cramer's rule]] yielding
 
:<math>c_i'(x) = \frac{W_i(x)}{W(x)}, \, \quad i=1,\ldots,n</math>
 
where <math>W(x)</math> is the [[Wronskian determinant]] of the fundamentalbasis system<math>y_1(x), \ldots, y_n(x)</math> and <math>W_i(x)</math> is the Wronskian determinant of the fundamental systembasis with the ''i''-th column replaced by <math>(0, 0, \ldots, b(x)).</math>
 
The particular solution to the non-homogeneous equation can then be written as
 
:<math>\sum_{i=1}^n y_i(x) \, \int \frac{W_i(x)}{W(x)}\, \mathrm dx.</math>
 
== Intuitive explanation ==
 
Consider the equation of the forced dispersionless spring, in suitable units:
:<math>x''(t) + x(t) = F(t).</math>
Here {{math|''x''}} is the displacement of the spring from the equilibrium {{math|''x'' {{=}} 0}}, and {{math|''F''(''t'')}} is an external applied force that depends on time. When the external force is zero, this is the homogeneous equation (whose solutions are linear combinations of sines and cosines, corresponding to the spring oscillating with constant total energy).
 
We can construct the solution physically, as follows. Between times <math>t=s</math> and <math>t=s+ds</math>, the momentum corresponding to the solution has a net change <math>F(s)\,ds</math> (see: [[Impulse (physics)]]). A solution to the inhomogeneous equation, at the present time {{math|''t'' > 0}}, is obtained by linearly superposing the solutions obtained in this manner, for {{math|''s''}} going between 0 and {{math|t}}.
 
The homogeneous initial-value problem, representing a small impulse <math>F(s)\,ds</math> being added to the solution at time <math>t=s</math>, is
:<math>x''(t)+x(t)=0,\quad x(s)=0,\ x'(s)=F(s)\,ds.</math>
The unique solution to this problem is easily seen to be <math>x(t) = F(s)\sin(t-s)\,ds</math>. The linear superposition of all of these solutions is given by the integral:
:<math>x(t) = \int_0^t F(s)\sin(t-s)\,ds.</math>
 
To verify that this satisfies the required equation:
:<math>x'(t)=\int_0^t F(s)\cos(t-s)\,ds</math>
:<math>x''(t) = F(t) - \int_0^tF(s)\sin(t-s)\,ds = F(t)-x(t),</math>
as required (see: [[Leibniz integral rule]]).
 
The general method of variation of parameters allows for solving an inhomogeneous linear equation
:<math>Lx(t)=F(t)</math>
by means of considering the second-order linear differential operator ''L'' to be the net force, thus the total impulse imparted to a solution between time ''s'' and ''s''+''ds'' is ''F''(''s'')''ds''. Denote by <math>x_s </math> the solution of the homogeneous initial value problem
:<math>Lx(t)=0, \quad x(s)=0,\ x'(s)=F (s)\,ds. </math>
Then a particular solution of the inhomogeneous equation is
:<math>x (t)=\int_0^t x_s (t)\,ds,</math>
the result of linearly superposing the infinitesimal homogeneous solutions. There are generalizations to higher order linear differential operators.
 
In practice, variation of parameters usually involves the fundamental solution of the homogeneous problem, the infinitesimal solutions <math>x_s </math> then being given in terms of explicit linear combinations of linearly independent fundamental solutions. In the case of the forced dispersionless spring, the kernel <math>\sin(t-s)=\sin t\cos s - \sin s\cos t </math> is the associated decomposition into fundamental solutions.
 
== Examples ==
Line 97 ⟶ 96:
=== First-order equation ===
:<math> y' + p(x)y = q(x) </math>
The generalcomplementary solution ofto theour corresponding homogeneous equationoriginal (written belowinhomogeneous) equation is the complementarygeneral solution toof ourthe originalcorresponding (inhomogeneous)homogeneous equation (written below):
: <math> y' + p(x)y = 0 </math>.
This homogeneous differential equation can be solved by different methods, for example [[separation of variables]]:
:<math>\frac{d}{dx} y + p(x)y = 0 </math>
Line 104 ⟶ 103:
:<math>\frac{dy}{dx}=-p(x)y </math>
 
:<math>{dy \over y} = -{p(x)\,dx},</math>
 
:<math>\int \frac{1}{ y} \, dy = -\int p(x) \, dx </math>
Line 115 ⟶ 114:
Now we return to solving the non-homogeneous equation:
: <math> y' + p(x)y = q(x)</math>
Using the method variation of parameters, the particular solution is formed by multiplying the complementary solution by an unknown function ''C''(''x''):
:<math>y_p = C(x) e^{-\int p(x) \, dx}</math>
By substituting the particular solution into the non-homogeneous equation, we can find ''C''(''x''):
: <math> C' (x) e^{-\int p(x) \, dx} - C(x) p(x) e^{-\int p(x) \, dx} + p(x) C(x) e^{-\int p(x) \, dx} = q(x)</math>
 
Line 144 ⟶ 143:
: <math>\lambda^2+4\lambda+4=(\lambda+2)^2=0 </math>
 
Since <math>\lambda=-2</math> is a repeated root, we have to introduce a factor of ''x'' for one solution to ensure linear independence: ''u''<submath>1</sub>&nbsp; u_1 =&nbsp;'' e''<sup>−2''x''^{-2x} </supmath> and ''u''<submath>2</sub>&nbsp; u_2 =&nbsp;''xe''<sup>−2''x'' e^{-2x}</supmath>. The [[Wronskian]] of these two functions is
 
: <math>W=\begin{vmatrix}
Line 153 ⟶ 152:
Because the Wronskian is non-zero, the two functions are linearly independent, so this is in fact the general solution for the homogeneous differential equation (and not a mere subset of it).
 
We seek functions ''A''(''x'') and ''B''(''x'') so ''A''(''x'')''u''<sub>1</sub>&nbsp;+&nbsp;''B''(''x'')''u''<sub>2</sub> is a generalparticular solution of the non-homogeneous equation. We need only calculate the integrals
 
:<math>A(x) = - \int {1\over W} u_2(x) b(x)\,\mathrm dx,\; B(x) = \int {1 \over W} u_1(x)b(x)\,\mathrm dx</math>
Line 163 ⟶ 162:
That is,
 
:<math>A(x) = - \int {1\over e^{-4x}} xe^{-2x} \cosh x \,\mathrm dx = - \int xe^{2x}\cosh x \,\mathrm dx = -{1\over 18}e^x\left(9(x-1)+e^{2x}(3x-1)\right)+C_1</math>
:<math>B(x) = \int {1 \over e^{-4x}} e^{-2x} \cosh x \,\mathrm dx = \int e^{2x}\cosh x\,\mathrm dx ={1\over 6}e^{x}\left(3+e^{2x}\right)+C_2 </math>
 
where <math>C_1</math> and <math>C_2</math> are constants of integration.
Line 217 ⟶ 216:
We have the system of equations
 
:<math>\begin{pmatrixbmatrix}
u_1(x) & u_2(x) \\
u_1'(x) & u_2'(x) \end{pmatrixbmatrix}
\begin{pmatrixbmatrix}
A'(x) \\
B'(x)\end{pmatrixbmatrix} =
\begin{bmatrix} 0 \\ f \end{bmatrix}.</math>
\begin{pmatrix}
0\\
f\end{pmatrix}.</math>
 
Expanding,
 
:<math>\begin{pmatrixbmatrix}
A'(x)u_1(x)+B'(x)u_2(x)\\
A'(x)u_1'(x)+B'(x)u_2'(x) \end{pmatrixbmatrix}
= \begin{pmatrixbmatrix} 0\\f\end{pmatrixbmatrix}.</math>
 
So the above system determines precisely the conditions
Line 238:
We seek ''A''(''x'') and ''B''(''x'') from these conditions, so, given
 
:<math>\begin{pmatrixbmatrix}
u_1(x) & u_2(x) \\
u_1'(x) & u_2'(x)
\end{pmatrixbmatrix}
\begin{pmatrixbmatrix}
A'(x) \\
B'(x)\end{pmatrixbmatrix} =
\begin{pmatrixbmatrix}
0\\
f\end{pmatrixbmatrix}</math>
 
we can solve for (''A''′(''x''), ''B''′(''x''))<sup>''T''</sup>, so
 
:<math>\begin{pmatrixbmatrix} A'(x) \\ B'(x) \end{bmatrix} =
\begin{bmatrix}
A'(x) \\
B'(x)\end{pmatrix}=
\begin{pmatrix}
u_1(x) & u_2(x) \\
u_1'(x) & u_2'(x)
\end{pmatrixbmatrix}^{-1}
\begin{pmatrixbmatrix} 0\\ f \end{pmatrixbmatrix} =\frac{1}{W} \begin{pmatrixbmatrix}
u_2'(x) & -u_2(x) \\
-u_1'(x) & u_1(x) \end{pmatrixbmatrix}
\begin{pmatrixbmatrix} 0\\ f \end{pmatrixbmatrix},</math>
 
where ''W'' denotes the [[Wronskian]] of ''u''<sub>1</sub> and ''u''<sub>2</sub>. (We know that ''W'' is nonzero, from the assumption that ''u''<sub>1</sub> and ''u''<sub>2</sub> are linearly independent.) So,
 
:<math> \begin{align}
A'(x) &= - {1\over W} u_2(x) f(x),\; & B'(x) &= {1 \over W} u_1(x)f(x) \\
A(x) &= - \int {1\over W} u_2(x) f(x)\,\mathrm dx,\; & B(x) &= \int {1 \over W} u_1(x)f(x)\,\mathrm dx
\end{align}</math>
 
Line 272:
Note that <math>A(x)</math> and <math> B(x)</math> are each determined only up to an arbitrary additive constant (the [[constant of integration]]). Adding a constant to <math>A(x)</math> or <math>B(x)</math> does not change the value of <math>Lu_G(x)</math> because the extra term is just a linear combination of ''u''<sub>1</sub> and ''u''<sub>2</sub>, which is a solution of <math>L</math> by definition.
 
==See References also==
* [[Alekseev–Gröbner formula]], a generalization of the variation of constants formula.
* [[Reduction of order]]
 
== Notes ==
{{reflist}}
 
== References ==
* {{cite book | last1=Coddington | first1=Earl A. | last2=Levinson | first2=Norman | title=Theory of Ordinary Differential Equations | url=https://archive.org/details/theoryofordinary00codd | url-access=registration | publisher=[[McGraw-Hill]] | ___location=New York | year=1955}}
* {{cite book
* {{cite book | title = Elementary Differential Equations and Boundary Value Problems 8th Edition | first1 = W. E. | last1 = Boyce | first2 = R. C. | last2 = DiPrima | publisher = Wiley Interscience | year = 1965}}, pages 186–192, 237–241
| last1 = Coddington
| first1 = Earl A.
| last2 = Levinson
| first2 = Norman
| title = Theory of Ordinary Differential Equations
| url = https://archive.org/details/theoryofordinary00codd
| url-access = registration
| publisher = [[McGraw-Hill]]
| year = 1955
}}
* {{cite book
| first1 = William E.
| last1 = Boyce
| first2 = Richard C.
| last2 = DiPrima
| title = Elementary Differential Equations and Boundary Value Problems
| edition = 8th
| publisher = Wiley
| year = 2005
| pages = 186–192, 237–241
}}
* {{cite book
| surnamelast = Teschl
| givenfirst = Gerald
|authorlink author-link = Gerald Teschl
| title = Ordinary Differential Equations and Dynamical Systems
| publisher = [[American Mathematical Society]]
| year = 2012
| place = [[Providence, Rhode Island|Providence]]
| url = https://www.mat.univie.ac.at/~gerald/ftp/book-ode/
| year =
}}
| url = http://www.mat.univie.ac.at/~gerald/ftp/book-ode/}}
 
== External links ==
*[http://tutorial.math.lamar.edu/classes/de/VariationofParameters.aspx Online Notes / Proof] by Paul Dawkins, [[Lamar University]].
*{{PlanetMath|VariationOfParameters}}
*[http://planetmath.org/encyclopedia/VariationOfParameters.html PlanetMath page].
*[https://projecteuclid.org/download/pdf_1/euclid.mjms/1316092232 A NOTE ON LAGRANGE’S METHOD OF VARIATION OF PARAMETERS]