Content deleted Content added
Amlakyaran25 (talk | contribs) Undid revision 1278765240 by MrOllie (talk) |
Maxeto0910 (talk | contribs) per WP:HOWTOSD Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1:
{{Short description|
for a machine learning algorithm}}
In [[machine learning]], '''hyperparameter optimization'''<ref>Matthias Feurer and Frank Hutter. [https://link.springer.com/content/pdf/10.1007%2F978-3-030-05318-5_1.pdf Hyperparameter optimization]. In: ''AutoML: Methods, Systems, Challenges'', pages 3–38.</ref> or tuning is the problem of choosing a set of optimal [[Hyperparameter (machine learning)|hyperparameters]] for a learning algorithm. A hyperparameter is a [[parameter]] whose value is used to control the learning process, which must be configured before the process starts.<ref>{{cite journal |last1=Yang|first1=Li|title=On hyperparameter optimization of machine learning algorithms: Theory and practice|journal=Neurocomputing|year=2020|volume=415|pages=295–316|doi=10.1016/j.neucom.2020.07.061|arxiv=2007.15745 }}</ref><ref>{{cite
Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined [[loss function]] on a given [[data set]].<ref name=abs1502.02127>{{cite arXiv |eprint=1502.02127|last1=Claesen|first1=Marc|title=Hyperparameter Search in Machine Learning|author2=Bart De Moor|class=cs.LG|year=2015}}</ref> The objective function takes a set of hyperparameters and returns the associated loss.<ref name=abs1502.02127/> [[Cross-validation (statistics)|Cross-validation]] is often used to estimate this generalization performance, and therefore choose the set of values for hyperparameters that maximize it.<ref name="bergstra">{{cite journal|last1=Bergstra|first1=James|last2=Bengio|first2=Yoshua|year=2012|title=Random Search for Hyper-Parameter Optimization|url=http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf|journal=Journal of Machine Learning Research|volume=13|pages=281–305}}</ref>
Line 110:
|last=Kernc
|title=SAMBO: Sequential And Model-Based Optimization: Efficient global optimization in Python
|date=2024
|url=https://zenodo.org/records/14461363
|access-date=2025-01-30
Line 118 ⟶ 119:
For specific learning algorithms, it is possible to compute the gradient with respect to hyperparameters and then optimize the hyperparameters using [[gradient descent]]. The first usage of these techniques was focused on neural networks.<ref>{{cite book |last1=Larsen|first1=Jan|last2= Hansen |first2=Lars Kai|last3=Svarer|first3=Claus|last4=Ohlsson|first4=M|title=Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop |chapter=Design and regularization of neural networks: The optimal use of a validation set |date=1996|pages=62–71|doi=10.1109/NNSP.1996.548336|isbn=0-7803-3550-3|citeseerx=10.1.1.415.3266|s2cid=238874|chapter-url=http://orbit.dtu.dk/files/4545571/Svarer.pdf}}</ref> Since then, these methods have been extended to other models such as [[support vector machine]]s<ref>{{cite journal |author1=Olivier Chapelle |author2=Vladimir Vapnik |author3=Olivier Bousquet |author4=Sayan Mukherjee |title=Choosing multiple parameters for support vector machines |journal=Machine Learning |year=2002 |volume=46 |pages=131–159 |url=http://www.chapelle.cc/olivier/pub/mlj02.pdf | doi = 10.1023/a:1012450327387 |doi-access=free }}</ref> or logistic regression.<ref>{{cite journal |author1 =Chuong B|author2= Chuan-Sheng Foo|author3=Andrew Y Ng|journal = Advances in Neural Information Processing Systems |volume=20|title = Efficient multiple hyperparameter learning for log-linear models|year =2008|url=http://papers.nips.cc/paper/3286-efficient-multiple-hyperparameter-learning-for-log-linear-models.pdf}}</ref>
A different approach in order to obtain a gradient with respect to hyperparameters consists in differentiating the steps of an iterative optimization algorithm using [[automatic differentiation]].<ref>{{cite journal|last1=Domke|first1=Justin|title=Generic Methods for Optimization-Based Modeling|journal=Aistats|date=2012|volume=22|url=http://www.jmlr.org/proceedings/papers/v22/domke12/domke12.pdf|access-date=2017-12-09|archive-date=2014-01-24|archive-url=https://web.archive.org/web/20140124182520/http://jmlr.org/proceedings/papers/v22/domke12/domke12.pdf|url-status=dead}}</ref><ref name=abs1502.03492>{{cite arXiv |last1=Maclaurin|first1=Dougal|last2=Duvenaud|first2=David|last3=Adams|first3=Ryan P.|eprint=1502.03492|title=Gradient-based Hyperparameter Optimization through Reversible Learning|class=stat.ML|date=2015}}</ref><ref>{{cite journal |last1=Franceschi |first1=Luca |last2=Donini |first2=Michele |last3=Frasconi |first3=Paolo |last4=Pontil |first4=Massimiliano |title=Forward and Reverse Gradient-Based Hyperparameter Optimization |journal=Proceedings of the 34th International Conference on Machine Learning |date=2017 |arxiv=1703.01785 |bibcode=2017arXiv170301785F |url=http://proceedings.mlr.press/v70/franceschi17a/franceschi17a-supp.pdf}}</ref><ref>
In a different approach,<ref>
Apart from hypernetwork approaches, gradient-based methods can be used to optimize discrete hyperparameters also by adopting a continuous relaxation of the parameters.<ref>
=== Evolutionary optimization ===
Line 148 ⟶ 149:
=== Others ===
[[Radial basis function|RBF]]<ref name=abs1705.08520>{{cite arXiv |eprint=1705.08520|last1=Diaz|first1=Gonzalo|title=An effective algorithm for hyperparameter optimization of neural networks|last2=Fokoue|first2=Achille|last3=Nannicini|first3=Giacomo|last4=Samulowitz|first4=Horst|class=cs.AI|year=2017}}</ref> and [[spectral method|spectral]]<ref name=abs1706.00764>{{cite arXiv |eprint=1706.00764|last1=Hazan|first1=Elad|title=Hyperparameter Optimization: A Spectral Approach|last2=Klivans|first2=Adam|last3=Yuan|first3=Yang|class=cs.LG|year=2017
== Issues with hyperparameter optimization ==
Line 161 ⟶ 162:
* [[Self-tuning]]
* [[XGBoost]]
* [[Optuna]]
== References ==
|