Hyperparameter optimization: Difference between revisions

Content deleted Content added
Gradient-based optimization: | Altered template type. Add: class, date, title, eprint, authors 1-4. Changed bare reference to CS1/2. Removed parameters. Some additions/deletions were parameter name changes. | Use this tool. Report bugs. | #UCB_Gadget
Tags: Mobile edit Mobile web edit Advanced mobile edit
 
(2 intermediate revisions by 2 users not shown)
Line 1:
{{Short description|The processProcess of finding the optimal set of variables
for a machine learning algorithm}}
In [[machine learning]], '''hyperparameter optimization'''<ref>Matthias Feurer and Frank Hutter. [https://link.springer.com/content/pdf/10.1007%2F978-3-030-05318-5_1.pdf Hyperparameter optimization]. In: ''AutoML: Methods, Systems, Challenges'', pages 3–38.</ref> or tuning is the problem of choosing a set of optimal [[Hyperparameter (machine learning)|hyperparameters]] for a learning algorithm. A hyperparameter is a [[parameter]] whose value is used to control the learning process, which must be configured before the process starts.<ref>{{cite journal |last1=Yang|first1=Li|title=On hyperparameter optimization of machine learning algorithms: Theory and practice|journal=Neurocomputing|year=2020|volume=415|pages=295–316|doi=10.1016/j.neucom.2020.07.061|arxiv=2007.15745 }}</ref><ref>{{cite arxivarXiv |vauthors=Franceschi L, Donini M, Perrone V, Klein A, Archambeau C, Seeger M, Pontil M, Frasconi P |title=Hyperparameter Optimization in Machine Learning |year=2024 |arxivclass=stat.ML |eprint=2410.22854 }}</ref>
 
Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined [[loss function]] on a given [[data set]].<ref name=abs1502.02127>{{cite arXiv |eprint=1502.02127|last1=Claesen|first1=Marc|title=Hyperparameter Search in Machine Learning|author2=Bart De Moor|class=cs.LG|year=2015}}</ref> The objective function takes a set of hyperparameters and returns the associated loss.<ref name=abs1502.02127/> [[Cross-validation (statistics)|Cross-validation]] is often used to estimate this generalization performance, and therefore choose the set of values for hyperparameters that maximize it.<ref name="bergstra">{{cite journal|last1=Bergstra|first1=James|last2=Bengio|first2=Yoshua|year=2012|title=Random Search for Hyper-Parameter Optimization|url=http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf|journal=Journal of Machine Learning Research|volume=13|pages=281–305}}</ref>
Line 162:
* [[Self-tuning]]
* [[XGBoost]]
* [[Optuna]]
 
== References ==