Content deleted Content added
No edit summary |
|||
(9 intermediate revisions by 7 users not shown) | |||
Line 1:
{{Short description|Model used in atom optics and magnetic resonance}}
{{Refimprove|date=August 2013}}
The '''rotating
The name of the approximation stems from the form of the Hamiltonian in the [[interaction picture]], as shown below.
The rotating-wave approximation is closely related to, but different from, the [[Redfield_equation#Secular_approximation|secular approximation]].<ref>{{cite journal |first1=H. |last1=Mäkelä |first2=M. |last2=Möttönen |title=Effects of the rotating-wave and secular approximations on non-Markovianity |url=https://link.aps.org/doi/10.1103/PhysRevA.88.052111 |journal=Physical Review A |date=13 November 2013 |pages=052111 |volume=88 |issue=5| doi=10.1103/PhysRevA.88.052111|arxiv=1306.6301 |bibcode=2013PhRvA..88e2111M }}</ref>
== Mathematical formulation ==
Line 19 ⟶ 22:
: <math>\vec{d} = \vec{d}_\text{eg}|\text{e}\rangle\langle\text{g}| + \vec{d}_\text{eg}^*|\text{g}\rangle\langle\text{e}|</math>
(with <math>^*</math> denoting the [[complex conjugate]]). The [[#
: <math>H_1 =
Line 29 ⟶ 32:
: <math>H_{1,I} =
-\hbar\left(\Omega e^{-i\Delta \omega t} + \tilde{\Omega}e^{i(\omega_L + \omega_0)t}\right)|\text{e}\rangle\langle\text{g}|
-\hbar\left(\tilde{\Omega}^* e^{-i(\omega_L + \omega_0)t} + \Omega^* e^{i\Delta \omega t}\right)|\text{g}\rangle\langle\text{e}|,
</math>
where <math>\Delta \omega \mathrel{:=} \omega_L - \omega_0</math> is the detuning between the light field and the atom.
=== Making the approximation ===
[[File:TLSRWA.gif|thumb|Two-level-system on resonance with a driving field with (blue) and without (green) applying the rotating-wave approximation.]]
This is the point at which the rotating wave approximation is made. The dipole approximation has been assumed, and for this to remain valid the electric field must be near [[resonance]] with the atomic transition. This means that <math>\Delta \omega \ll \omega_L + \omega_0</math> and the complex exponentials multiplying <math>\tilde{\Omega}</math> and <math>\tilde{\Omega}^*</math> can be considered to be rapidly oscillating. Hence on any appreciable time scale, the oscillations will quickly average to 0. The rotating wave approximation is thus the claim that these terms may be neglected and thus the Hamiltonian can be written in the interaction picture as
: <math>H_{1,I}^{\text{RWA}} =
-\hbar\Omega e^{-i\Delta \omega t}|\text{e}\rangle\langle\text{g}|
-\hbar\Omega^* e^{i\Delta \omega t}|\text{g}\rangle\langle\text{e}|.
</math>
Line 74 ⟶ 77:
\end{align}</math>
as stated. The next step is to find the Hamiltonian in the [[interaction picture]], <math>H_{1,I}</math>. The required unitary transformation is:
\begin{align}
U & = e^{iH_0t/\hbar}
e^{i \omega_0 t |\text{e}\rangle \langle\text{e}|} =▼
& = e^{i \omega_0 t/2 (|\text{
& = \cos\left(\frac{\omega_0 t}{2}\right)
</math>,▼
\left(|\text{e}\rangle \langle\text{e}| + |\text{g}\rangle \langle\text{g}|\right) + i \sin\left(\frac{\omega_0 t}{2}\right) \left(|\text{e}\rangle \langle\text{e}| - |\text{g}\rangle \langle\text{g}|\right) \\
▲ & = e^{-i\omega_0 t/2}|\text{g}\rangle \langle\text{g}| + e^{i \omega_0 t/2} |\text{e}\rangle \langle\text{e}|
& = e^{-i\omega_0 t/2}\left(|\text{g}\rangle \langle\text{g}| + e^{i \omega_0 t} |\text{e}\rangle \langle\text{e}|\right)
\end{align}
,where the
: <math>\begin{align}
Line 88 ⟶ 96:
&= -\hbar\left(\Omega e^{-i\omega_Lt} + \tilde{\Omega}e^{i\omega_Lt}\right)e^{i\omega_0t}|\text{e}\rangle\langle\text{g}|
-\hbar\left(\tilde{\Omega}^* e^{-i\omega_Lt} + \Omega^*e^{i\omega_Lt}\right)|\text{g}\rangle\langle\text{e}|e^{-i\omega_0t} \\
&= -\hbar\left(\Omega e^{-i\Delta \omega t} + \tilde{\Omega}e^{i(\omega_L + \omega_0)t}\right)|\text{e}\rangle\langle\text{g}|
-\hbar\left(\tilde{\Omega}^*e^{-i(\omega_L + \omega_0)t} + \Omega^* e^{i\Delta \omega t}\right)|\text{g}\rangle\langle\text{e}|\ .
\end{align}</math>
Now we apply the RWA by eliminating the counter-rotating terms as explained in the previous section
: <math>
H_{1,I}^{\text{RWA}} = -\hbar\Omega e^{-i\Delta\omega t}|\text{e}\rangle\langle\text{g}| + -\hbar\Omega^* e^{i \Delta\omega t}|\text{g}\rangle\langle\text{e}|
</math>
Finally, we transform the approximate Hamiltonian <math>H_{1,I}^{\text{RWA}}</math> back to the Schrödinger picture:
: <math>\begin{align}
H_1^\text{RWA} &= U^\dagger H_{1,I}^{\text{RWA}} U \\
&= -\hbar\Omega e^{-i\Delta \omega t}e^{-i\omega_0 t}|\text{e}\rangle\langle\text{g}|
-\hbar\Omega^* e^{i\Delta \omega t}|\text{g}\rangle\langle\text{e}|e^{i\omega_0t} \\
&= -\hbar\Omega e^{-i\omega_Lt}|\text{e}\rangle\langle\text{g}|
-\hbar\Omega^* e^{i\omega_Lt}|\text{g}\rangle\langle\text{e}|.
|