Rotating-wave approximation: Difference between revisions

Content deleted Content added
Used \Delta \omega in place of \Delta. Appearances of \Delta t were very confusing
 
(7 intermediate revisions by 6 users not shown)
Line 1:
{{Short description|Model used in atom optics and magnetic resonance}}
{{Refimprove|date=August 2013}}
 
The '''rotating -wave approximation''' is an approximation used in [[atom optics]] and [[Nuclear magnetic resonance|magnetic resonance]]. In this approximation, terms in a [[Hamiltonian (quantum mechanics)|Hamiltonian]] whichthat oscillate rapidly are neglected. This is a valid approximation when the applied electromagnetic radiation is near resonance with an atomic transition, and the intensity is low.<ref name="WuYang2007">{{cite journal |last1=Wu |first1=Ying |last2=Yang |first2=Xiaoxue |title=Strong-Coupling Theory of Periodically Driven Two-Level Systems |journal=Physical Review Letters |volume=98 |issue=1 |year=2007 |issn=0031-9007 |doi=10.1103/PhysRevLett.98.013601 |bibcode = 2007PhRvL..98a3601W |pmid=17358474 |page=013601}}</ref> Explicitly, terms in the Hamiltonians whichthat oscillate with frequencies <math>\omega_L + \omega_0 </math> are neglected, while terms whichthat oscillate with frequencies <math>\omega_L - \omega_0 </math> are kept, where <math> \omega_L </math> is the light frequency, and <math> \omega_0</math> is a transition frequency.
 
The name of the approximation stems from the form of the Hamiltonian in the [[interaction picture]], as shown below. By switching to this picture the evolution of an atom due to the corresponding atomic Hamiltonian is absorbed into the system [[bra–ket notation|ket]], leaving only the evolution due to the interaction of the atom with the light field to consider. It is in this picture that the rapidly oscillating terms mentioned previously can be neglected. Since in some sense the interaction picture can be thought of as rotating with the system ket only that part of the electromagnetic wave that approximately co-rotates is kept; the counter-rotating component is discarded.
 
The rotating-wave approximation is closely related to, but different from, the [[Redfield_equation#Secular_approximation|secular approximation]].<ref>{{cite journal |first1=H. |last1=Mäkelä |first2=M. |last2=Möttönen |title=Effects of the rotating-wave and secular approximations on non-Markovianity |url=https://link.aps.org/doi/10.1103/PhysRevA.88.052111 |journal=Physical Review A |date=13 November 2013 |pages=052111 |volume=88 |issue=5| doi=10.1103/PhysRevA.88.052111|arxiv=1306.6301 |bibcode=2013PhRvA..88e2111M }}</ref>
 
== Mathematical formulation ==
Line 74 ⟶ 77:
\end{align}</math>
 
as stated. The next step is to find the Hamiltonian in the [[interaction picture]], <math>H_{1,I}</math>. The required unitary transformation is:
 
: <math>U =
\begin{align}
U & = e^{iH_0t/\hbar} =\\
e^{i \omega_0 t |\text{e}\rangle \langle\text{e}|} =
& = e^{i \omega_0 t/2 (|\text{ge}\rangle \langle\text{ge}| + e^{i \omega_0 t}- |\text{eg}\rangle \langle\text{eg}|)} \\
& = \cos\left(\frac{\omega_0 t}{2}\right)
</math>,
\left(|\text{e}\rangle \langle\text{e}| + |\text{g}\rangle \langle\text{g}|\right) + i \sin\left(\frac{\omega_0 t}{2}\right) \left(|\text{e}\rangle \langle\text{e}| - |\text{g}\rangle \langle\text{g}|\right) \\
& = e^{-i\omega_0 t/2}|\text{g}\rangle \langle\text{g}| + e^{i \omega_0 t/2} |\text{e}\rangle \langle\text{e}|} =\\
& = e^{-i\omega_0 t/2}\left(|\text{g}\rangle \langle\text{g}| + e^{i \omega_0 t} |\text{e}\rangle \langle\text{e}|\right)
\end{align}
</math>,
 
,where the last3rd step can be seenproved to follow e.g.by fromusing a [[Taylor series]] expansion with the fact that <math>|\text{g}\rangle\langle\text{g}| + |\text{e}\rangle\langle\text{e}| = 1</math>, and due tousing the orthogonality of the states <math>|\text{g}\rangle</math> and <math>|\text{e}\rangle</math>. The substitution for <math>H_0</math> in the second step being different from the definition given in the previous section can be justified either by shifting the overall energy levels such that <math>|\text{g}\rangle</math> has energy <math>0</math> and <math>|\text{e}\rangle</math> has energy <math>\hbar\omega_0</math>, or by notingNote that a multiplication by an overall phase (of <math>e^{i \omega_0 t/2}</math> in this case) on a unitary operator does not affect the underlying physics, so in the further usages of <math>U</math> we will neglect it. WeApplying now<math>U</math> havegives:
 
: <math>\begin{align}
Line 92 ⟶ 100:
\end{align}</math>
 
Now we apply the RWA by eliminating the counter-rotating terms as explained in the previous section, and finally transform the approximate Hamiltonian <math>H_{1,I}^{\text{RWA}}</math> back to the Schrödinger picture:
 
: <math>
H_{1,I}^{\text{RWA}} = -\hbar\Omega e^{-i\Delta\omega t}|\text{e}\rangle\langle\text{g}| + -\hbar\Omega^* e^{i \Delta\omega t}|\text{g}\rangle\langle\text{e}|
</math>
 
Finally, we transform the approximate Hamiltonian <math>H_{1,I}^{\text{RWA}}</math> back to the Schrödinger picture:
 
: <math>\begin{align}