Content deleted Content added
Jess Riedel (talk | contribs) Used \Delta \omega in place of \Delta. Appearances of \Delta t were very confusing |
|||
(7 intermediate revisions by 6 users not shown) | |||
Line 1:
{{Short description|Model used in atom optics and magnetic resonance}}
{{Refimprove|date=August 2013}}
The '''rotating
The name of the approximation stems from the form of the Hamiltonian in the [[interaction picture]], as shown below.
The rotating-wave approximation is closely related to, but different from, the [[Redfield_equation#Secular_approximation|secular approximation]].<ref>{{cite journal |first1=H. |last1=Mäkelä |first2=M. |last2=Möttönen |title=Effects of the rotating-wave and secular approximations on non-Markovianity |url=https://link.aps.org/doi/10.1103/PhysRevA.88.052111 |journal=Physical Review A |date=13 November 2013 |pages=052111 |volume=88 |issue=5| doi=10.1103/PhysRevA.88.052111|arxiv=1306.6301 |bibcode=2013PhRvA..88e2111M }}</ref>
== Mathematical formulation ==
Line 74 ⟶ 77:
\end{align}</math>
as stated. The next step is to find the Hamiltonian in the [[interaction picture]], <math>H_{1,I}</math>. The required unitary transformation is:
\begin{align}
U & = e^{iH_0t/\hbar}
e^{i \omega_0 t |\text{e}\rangle \langle\text{e}|} =▼
& = e^{i \omega_0 t/2 (|\text{
& = \cos\left(\frac{\omega_0 t}{2}\right)
</math>,▼
\left(|\text{e}\rangle \langle\text{e}| + |\text{g}\rangle \langle\text{g}|\right) + i \sin\left(\frac{\omega_0 t}{2}\right) \left(|\text{e}\rangle \langle\text{e}| - |\text{g}\rangle \langle\text{g}|\right) \\
▲ & = e^{-i\omega_0 t/2}|\text{g}\rangle \langle\text{g}| + e^{i \omega_0 t/2} |\text{e}\rangle \langle\text{e}|
& = e^{-i\omega_0 t/2}\left(|\text{g}\rangle \langle\text{g}| + e^{i \omega_0 t} |\text{e}\rangle \langle\text{e}|\right)
\end{align}
,where the
: <math>\begin{align}
Line 92 ⟶ 100:
\end{align}</math>
Now we apply the RWA by eliminating the counter-rotating terms as explained in the previous section
: <math>
H_{1,I}^{\text{RWA}} = -\hbar\Omega e^{-i\Delta\omega t}|\text{e}\rangle\langle\text{g}| + -\hbar\Omega^* e^{i \Delta\omega t}|\text{g}\rangle\langle\text{e}|
</math>
Finally, we transform the approximate Hamiltonian <math>H_{1,I}^{\text{RWA}}</math> back to the Schrödinger picture:
: <math>\begin{align}
|