Content deleted Content added
m →top: punct., style |
|||
(4 intermediate revisions by 4 users not shown) | |||
Line 1:
{{Short description|Model used in atom optics and magnetic resonance}}
{{Refimprove|date=August 2013}}
Line 5 ⟶ 6:
The name of the approximation stems from the form of the Hamiltonian in the [[interaction picture]], as shown below. By switching to this picture the evolution of an atom due to the corresponding atomic Hamiltonian is absorbed into the system [[bra–ket notation|ket]], leaving only the evolution due to the interaction of the atom with the light field to consider. It is in this picture that the rapidly oscillating terms mentioned previously can be neglected. Since in some sense the interaction picture can be thought of as rotating with the system ket only that part of the electromagnetic wave that approximately co-rotates is kept; the counter-rotating component is discarded.
The rotating-wave approximation is closely related to, but different from, the [[Redfield_equation#Secular_approximation|secular approximation]].<ref>{{cite journal |first1=H. |last1=Mäkelä |first2=M. |last2=Möttönen |title=Effects of the rotating-wave and secular approximations on non-Markovianity |url=https://link.aps.org/doi/10.1103/PhysRevA.88.052111 |journal=Physical Review A |date=13 November 2013 |pages=052111 |volume=88 |issue=5| doi=10.1103/PhysRevA.88.052111|arxiv=1306.6301 |bibcode=2013PhRvA..88e2111M }}</ref>
== Mathematical formulation ==
Line 76 ⟶ 77:
\end{align}</math>
as stated. The next step is to find the Hamiltonian in the [[interaction picture]], <math>H_{1,I}</math>. The required unitary transformation is:
\begin{align}
U & = e^{iH_0t/\hbar}
e^{i \omega_0 t |\text{e}\rangle \langle\text{e}|} =▼
& = e^{i \omega_0 t/2 (|\text{
& = \cos\left(\frac{\omega_0 t}{2}\right)
</math>,▼
\left(|\text{e}\rangle \langle\text{e}| + |\text{g}\rangle \langle\text{g}|\right) + i \sin\left(\frac{\omega_0 t}{2}\right) \left(|\text{e}\rangle \langle\text{e}| - |\text{g}\rangle \langle\text{g}|\right) \\
▲ & = e^{-i\omega_0 t/2}|\text{g}\rangle \langle\text{g}| + e^{i \omega_0 t/2} |\text{e}\rangle \langle\text{e}|
& = e^{-i\omega_0 t/2}\left(|\text{g}\rangle \langle\text{g}| + e^{i \omega_0 t} |\text{e}\rangle \langle\text{e}|\right)
\end{align}
,where the
: <math>\begin{align}
Line 94 ⟶ 100:
\end{align}</math>
Now we apply the RWA by eliminating the counter-rotating terms as explained in the previous section
: <math>
H_{1,I}^{\text{RWA}} = -\hbar\Omega e^{-i\Delta\omega t}|\text{e}\rangle\langle\text{g}| + -\hbar\Omega^* e^{i \Delta\omega t}|\text{g}\rangle\langle\text{e}|
</math>
Finally, we transform the approximate Hamiltonian <math>H_{1,I}^{\text{RWA}}</math> back to the Schrödinger picture:
: <math>\begin{align}
|