Content deleted Content added
m Dating maintenance tags: {{Clarify span}} |
|||
(8 intermediate revisions by 4 users not shown) | |||
Line 3:
'''Random sample consensus''' ('''RANSAC''') is an [[iterative method]] to estimate parameters of a mathematical model from a set of observed data that contains [[outliers]], when outliers are to be {{clarify span|accorded no influence|date=November 2024}} on the values of the estimates. Therefore, it also can be interpreted as an outlier detection method.<ref>Data Fitting and Uncertainty, T. Strutz, Springer Vieweg (2nd edition, 2016).</ref> It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and Bolles at [[SRI International]] in 1981. They used RANSAC to solve the ___location determination problem (LDP), where the goal is to determine the points in the space that project onto an image into a set of landmarks with known locations.
RANSAC uses [[Cross-validation (statistics)#Repeated random sub-sampling validation|repeated random sub-sampling]].<ref>{{cite web |
==Example==
Line 225:
* [[Resampling (statistics)]]
* Hop-Diffusion Monte Carlo uses randomized sampling involve global jumps and local diffusion to choose the sample at each step of RANSAC for epipolar geometry estimation between very wide-baseline images.<ref>{{cite journal |last1=Brahmachari |first1=Aveek S. |last2=Sarkar |first2=Sudeep |title=Hop-Diffusion Monte Carlo for Epipolar Geometry Estimation between Very Wide-Baseline Images |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |date=March 2013 |volume=35 |issue=3 |pages=755–762 |doi=10.1109/TPAMI.2012.227|pmid=26353140 |s2cid=2524656 }}</ref>
* [[FSASAC]] (RANSAC based on data filtering and [[simulated annealing]])<ref>W. Ruoyan and W. Junfeng, "[https://ieeexplore.ieee.org/document/9648331 FSASAC: Random Sample Consensus Based on Data Filter and Simulated Annealing]," in IEEE Access, vol. 9, pp. 164935-164948, 2021, doi: 10.1109/ACCESS.2021.3135416.</ref>
== See also ==
|