WKB approximation: Difference between revisions

Content deleted Content added
Link suggestions feature: 3 links added.
Tags: Visual edit Mobile edit Mobile web edit Newcomer task Suggested: add links
 
(One intermediate revision by the same user not shown)
Line 162:
 
 
Hence, when <math>E > V(x)</math>, the wavefunction can be chosen to be expressed as:<math display="block">\Psi(x') \approx C \frac{\cos{(\frac 1 \hbar \int |p(x)|\,dx} + \alpha) }{\sqrt{|p(x)| }} + D \frac{ \sin{(- \frac 1 \hbar \int |p(x)|\,dx} +\alpha)}{\sqrt{|p(x)| }} </math>and for <math>V(x) > E</math>,<math display="block">\Psi(x') \approx \frac{ C_{+} e^{+- \frac{i1}{\hbar} \int |p(x)|\,dx}}{\sqrt{|p(x)|}} + \frac{ C_{-} e^{-+ \frac{i1}{\hbar} \int |p(x)|\,dx} }{ \sqrt{|p(x)|} } . </math>The integration in this solution is computed between the classical turning point and the arbitrary position x'.
 
=== Validity of WKB solutions ===