Partially ordered set: Difference between revisions

Content deleted Content added
Examples: placement of 'only'
Undid revision 1305943583 by 5.45.140.111 (talk) unexplained reduplication of article text
 
(38 intermediate revisions by 22 users not shown)
Line 4:
In [[mathematics]], especially [[order theory]], a '''partial order''' on a [[Set (mathematics)|set]] is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize [[total order]]s, in which every pair is comparable.
 
Formally, a partial order is a [[homogeneous binary relation]] that is [[Reflexive relation|reflexive]], [[Transitiveantisymmetric relation|transitiveantisymmetric]], and [[AntisymmetricTransitive relation|antisymmetrictransitive]]. A '''partially ordered set''' ('''poset''' for short) is an [[ordered pair]] <math>P=(X,\leq)</math> consisting of a set on<math>X</math> which(called the ''ground set'' of <math>P</math>) and a partial order <math>\leq</math> on <math>X</math>. When the meaning is definedclear from context and there is no ambiguity about the partial order, the set <math>X</math> itself is sometimes called a poset.
 
== Partial order relations ==
Line 20:
=== Strict partial orders ===
 
An '''irreflexive''', '''strong''',<ref name=Wallis/> or '''{{visible anchor|strict partial order|Strict partial order|Irreflexive partial order}}''' is a homogeneous relation < on a set <math>P</math> that is [[Irreflexive relation|irreflexive]], [[Asymmetric relation|asymmetric]], and [[Transitive relation|transitive]]; that is, it satisfies the following conditions for all <math>a, b, c \in P:</math>
# [[Irreflexive relation|Irreflexivity]]: not <math>\neg\left( a < a \right)</math>, i.e. no element is related to itself (also called anti-reflexive).
# [[Asymmetric relation|Asymmetry]]: if <math>a < b</math> then not <math>b < a</math>.
# [[Transitive relation|Transitivity]]: if <math>a < b</math> and <math>b < c</math> then <math>a < c</math>.
 
Irreflexivity and transitivity together imply asymmetry. Also, asymmetry implies irreflexivity. In other words, aA transitive relation is asymmetric if and only if it is irreflexive.<ref name="Flaška 2007">{{cite journal |last1=Flaška |first1=V. |last2=Ježek |first2=J. |last3=Kepka |first3=T. |last4=Kortelainen |first4=J. |title=Transitive Closures of Binary Relations I |journal=Acta Universitatis Carolinae. Mathematica et Physica |year=2007 |volume=48 |issue=1 |pages=55–69 |publisher=School of Mathematics – Physics Charles University |___location=Prague |url=http://dml.cz/dmlcz/142762 }} Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".</ref> So the definition is the same if it omits either irreflexivity or asymmetry (but not both).
 
A strict partial order is also known as an asymmetric [[strict preorder]].
Line 44:
== Notation ==
 
Given a set <math>P</math> and a partial order relation, typically the non-strict partial order <math>\leq</math>, we may uniquely extend our notation to define four partial order relations <math>\leq,</math> <math><,</math> <math>\geq,</math> and <math>></math>, where <math>\leq</math> is a non-strict partial order relation on <math>P</math>, <math> < </math> is the associated strict partial order relation on <math>P</math> (the [[irreflexive kernel]] of <math>\leq</math>), <math>\geq</math> is the dual of <math>\leq</math>, and <math> > </math> is the dual of <math> < </math>. Strictly speaking, the term ''partially ordered set'' refers to a set with all of these relations defined appropriately. But practically, one need only consider a single relation, <math>(P,\leq)</math> or <math>(P,<)</math>, or, in rare instances, the non-strict and non-strict relations together, <math>(P,\leq,<)</math>.<ref>{{cite book |last1=Avigad |first1=Jeremy |last2=Lewis |first2=Robert Y. |last3=van Doorn |first3=Floris |title=Logic and Proof |date=29 March 2021 |edition=Release 3.18.4 |url=https://leanprover.github.io/logic_and_proof/relations.html#more-on-orderings |access-date=24 July 2021 |chapter=13.2. More on Orderings |quote=So we can think of every partial order as really being a pair, consisting of a weak partial order and an associated strict one. |archive-date=3 April 2023 |archive-url=https://web.archive.org/web/20230403074506/https://leanprover.github.io/logic_and_proof/relations.html#more-on-orderings |url-status=dead }}</ref>
 
The term ''ordered set'' is sometimes used as a shorthand for ''partially ordered set'', as long as it is clear from the context that no other kind of order is meant. In particular, [[Total order|totally ordered sets]] can also be referred to as "ordered sets", especially in areas where these structures are more common than posets. Some authors use different symbols than <math>\leq</math> such as <math>\sqsubseteq</math><ref>{{cite web |last1=Rounds |first1=William C. |title=Lectures slides |url=http://www.eecs.umich.edu/courses/eecs203-1/203-Mar7.pdf |website=EECS 203: DISCRETE MATHEMATICS |access-date=23 July 2021 |date=7 March 2002}}</ref> or <math>\preceq</math><ref>{{cite book |last1=Kwong |first1=Harris |title=A Spiral Workbook for Discrete Mathematics |date=25 April 2018 |url=https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/A_Spiral_Workbook_for_Discrete_Mathematics_(Kwong)/07%3A_Relations/7.04%3A_Partial_and_Total_Ordering |access-date=23 July 2021 |language=en |chapter=7.4: Partial and Total Ordering}}</ref> to distinguish partial orders from total orders.
Line 52:
== Alternative definitions ==
 
Another way of defining a partial order, found in [[computer science]], is via a notion of [[Comparability|comparison]]. Specifically, given <math>\leq, <, \geq, \text{ and } ></math> as defined previously, it can be observed that two elements ''x'' and ''y'' may stand in any of four [[mutually exclusive]] relationships to each other: either {{nowrap|''x'' < ''y''}}, or {{nowrap|1=''x'' = ''y''}}, or {{nowrap|''x'' > ''y''}}, or ''x'' and ''y'' are ''incomparable''. This can be represented by a function <math>\text{compare}: P \times P \to \{<,>,=,\vert \}</math> that returns one of four codes when given two elements.<ref>{{cite web |title=Finite posets |url=http://match.stanford.edu/reference/combinat/sage/combinat/posets/posets.html#sage.combinat.posets.posets.FinitePoset.compare_elements |website=Sage 9.2.beta2 Reference Manual: Combinatorics |access-date=5 January 2022|quote=compare_elements(''x'', ''y''): Compare ''x'' and ''y'' in the poset. If {{nowrap|''x'' < ''y''}}, return −1. If {{nowrap|1=''x'' = ''y''}}, return 0. If {{nowrap|''x'' > ''y''}}, return 1. If ''x'' and ''y'' are not comparable, return None.}}</ref><ref>{{cite tech report |last1=Chen |first1=Peter |last2=Ding |first2=Guoli |last3=Seiden |first3=Steve |title=On Poset Merging |page=2 |url=https://www.math.lsu.edu/~ding/poset.pdf |access-date=5 January 2022 |quote=A comparison between two elements s, t in S returns one of three distinct values, namely s≤t, s>t or s<nowiki>|</nowiki>t.}}</ref> This definition is equivalent to a ''partial order on a [[setoid]]'', where equality is taken to be a defined [[equivalence relation]] rather than the primitive notion of set equality.<ref>{{cite conference |conference=CALCULEMUS-2003 – 11th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning|___location=Roma, Italy |date=11 September 2003 |url=https://hal.science/hal-02549766/document#page=98 |publisher=Aracne |language=en|title=Making proofs in a hierarchy of mathematical structures|first1=Virgile|last1=Prevosto|first2=Mathieu|last2=Jaume|pages=89–100}}</ref>
 
Wallis defines a more general notion of a ''partial order relation'' as any [[homogeneous relation]] that is [[Transitive relation|transitive]] and [[Antisymmetric relation|antisymmetric]]. This includes both reflexive and irreflexive partial orders as subtypes.<ref name=Wallis>{{cite book |last1=Wallis |first1=W. D. |title=A Beginner's Guide to Discrete Mathematics |date=14 March 2013 |publisher=Springer Science & Business Media |isbn=978-1-4757-3826-1 |page=100 |url=https://books.google.com/books?id=ONgRBwAAQBAJ&dq=%22partial%20order%20relation%22&pg=PA100 |language=en}}</ref>
Line 60:
== Examples ==
 
[[File:Division relation 4.pngsvg|thumb|alt=Division Relationship Up to 4|'''Fig. 3''' Graph of the divisibility of numbers from 1 to 4. This set is partially, but not totally, ordered because there is a relationship from 1 to every other number, but there is no relationship from 2 to 3 or 3 to 4]]
 
Standard examples of posets arising in mathematics include:
Line 170:
If the count is made only [[up to]] isomorphism, the sequence 1, 1, 2, 5, 16, 63, 318, ... {{OEIS|A000112}} is obtained.
 
== Linear extensionSubposets ==
A poset <math>P^*=(X^*, \leq^*)</math> is called a '''subposet''' of another poset <math>P=(X, \leq)</math> provided that <math>X^*</math> is a [[subset]] of <math>X</math> and <math>\leq^*</math> is a subset of <math>\leq</math>. The latter condition is equivalent to the requirement that for any <math>x</math> and <math>y</math> in <math>X^*</math> (and thus also in <math>X</math>), if <math>x \leq^* y</math> then <math>x \leq y</math>.
 
If <math>P^*</math> is a subposet of <math>P</math> and furthermore, for all <math>x</math> and <math>y</math> in <math>X^*</math>, whenever <math>x \leq y</math> we also have <math>x \leq^* y</math>, then we call <math>P^*</math> the subposet of <math>P</math> '''induced''' by <math>X^*</math>, and write <math>P^* = P[X^*]</math>.

== Linear extension ==
A partial order <math>\leq^*</math> on a set <math>X</math> is called an '''extension''' of another partial order <math>\leq</math> on <math>X</math> provided that for all elements <math>x, y \in X,</math> whenever <math>x \leq y,</math> it is also the case that <math>x \leq^* y.</math> A [[linear extension]] is an extension that is also a linear (that is, total) order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order. Every partial order can be extended to a total order ([[order-extension principle]]).<ref>{{cite book |last=Jech |first=Thomas |author-link=Thomas Jech |title=The Axiom of Choice |year=2008 |orig-year=1973 |publisher=[[Dover Publications]] |isbn=978-0-486-46624-8}}</ref>
 
In [[computer science]], algorithms for finding linear extensions of partial orders (represented as the [[reachability]] orders of [[directed acyclic graph]]s) are called [[topological sorting]].
 
== In category theory ==
{{main|Posetal category}}
Every poset (and every [[Preorder|preordered set]]) may be considered as a [[Category (mathematics)|category]] where, for objects <math>x</math> and <math>y,</math> there is at most one [[morphism]] from <math>x</math> to <math>y.</math> More explicitly, let {{nowrap|1=hom(''x'', ''y'') = {{mset|(''x'', ''y'')}}}} if {{nowrap|''x'' ≤ ''y''}} (and otherwise the [[empty set]]) and <math>(y, z) \circ (x, y) = (x, z).</math> Such categories are sometimes called ''[[Posetal category|posetal]]''. In differential topology, homology theory (HT) is used for classifying equivalent smooth manifolds M, related to the geometrical shapes of M.
 
Posets are [[Equivalence of categories|equivalent]] to one another if and only if they are [[Isomorphism of categories|isomorphic]]. In a poset, the smallest element, if it exists, is an [[initial object]], and the largest element, if it exists, is a [[terminal object]]. Also, every preordered set is equivalent to a poset. Finally, every subcategory of a poset is [[isomorphism-closed]].
Every poset (and every [[Preorder|preordered set]]) may be considered as a [[Category (mathematics)|category]] where, for objects <math>x</math> and <math>y,</math> there is at most one [[morphism]] from <math>x</math> to <math>y.</math> More explicitly, let {{nowrap|1=hom(''x'', ''y'') = {{mset|(''x'', ''y'')}}}} if {{nowrap|''x'' ≤ ''y''}} (and otherwise the [[empty set]]) and <math>(y, z) \circ (x, y) = (x, z).</math> Such categories are sometimes called ''[[Posetal category|posetal]]''. In differential topology, homology theory (HT) is used for classifying equivalent smooth manifolds M, related to the geometrical shapes of M.
 
Posets are [[Equivalence of categories|equivalent]] to one another if and only if they are [[Isomorphism of categories|isomorphic]]. In a poset, the smallest element, if it exists, is an [[initial object]], and the largest element, if it exists, is a [[terminal object]]. Also, every preordered set is equivalent to a poset. Finally, every subcategory of a poset is [[isomorphism-closed]]. In differential topology, homology theory (HT) is used for classifying equivalent smooth manifolds M, related to the geometrical shapes of M. In homology theory is given an axiomatic HT approach, especially to singular homology.{{clarify|date=May 2023}} The HT members are algebraic invariants under diffeomorphisms. The axiomatic HT category is taken in G. Kalmbach from the book Eilenberg–Steenrod (see the references) in order to show that the set theoretical topological concept for the HT definition can be extended to partial ordered sets P. Important are chains and filters in P (replacing shapes of M) for defining HT classifications, available for many P applications not related to set theory.
 
== Partial orders in topological spaces ==
Line 233 ⟶ 237:
* [[Strict weak ordering]] – strict partial order "<" in which the relation {{nowrap|"neither ''a'' < ''b''}} {{nowrap|nor ''b'' < ''a''"}} is transitive.
* {{annotated link|Total order}}
* [[Tree (data structure)#Using set inclusion|Tree]] – Data structure of set inclusion
* {{annotated link|Zorn's lemma}}
{{div col end}}
Line 255 ⟶ 258:
 
== External links ==
{{Commons category inline|Hasse diagrams}}; each of which shows an example for a partial order
{{Commons|Hasse diagram}}
{{refbegin}}
* {{OEIS el|1=A001035|2= Number of posets with ''n'' labeled elements|formalname=Number of partially ordered sets ("posets") with n labeled elements (or labeled acyclic transitive digraphs)}}
Line 266 ⟶ 269:
[[Category:Order theory]]
[[Category:Binary relations]]
 
[[de:Ordnungsrelation#Halbordnung]]