Partially ordered set: Difference between revisions

Content deleted Content added
Undid revision 1255348218 by Holderbp (talk) This fact was clear in the previous version; it is not in fact more important than clearly articulating what the definition actually is
Undid revision 1305943583 by 5.45.140.111 (talk) unexplained reduplication of article text
 
(17 intermediate revisions by 12 users not shown)
Line 4:
In [[mathematics]], especially [[order theory]], a '''partial order''' on a [[Set (mathematics)|set]] is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize [[total order]]s, in which every pair is comparable.
 
Formally, a partial order is a [[homogeneous binary relation]] that is [[Reflexive relation|reflexive]], [[antisymmetric relation|antisymmetric]], and [[Transitive relation|transitive]]. A '''partially ordered set''' ('''poset''' for short) is an [[ordered pair]] <math>P=(X,\leq)</math> consisting of a set <math>X</math> (called the ''ground set'' of <math>P</math>) and a partial order <math>\leq</math> on <math>X</math>. When the meaning is clear from context and there is no ambiguity about the partial order, the set <math>X</math> itself is sometimes called a poset.
 
== Partial order relations ==
Line 20:
=== Strict partial orders ===
 
An '''irreflexive''', '''strong''',<ref name=Wallis/> or '''{{visible anchor|strict partial order|Strict partial order|Irreflexive partial order}}''' is a homogeneous relation < on a set <math>P</math> that is [[TransitiveIrreflexive relation|transitiveirreflexive]], [[IrreflexiveAsymmetric relation|irreflexiveasymmetric]], and [[AsymmetricTransitive relation|asymmetrictransitive]]; that is, it satisfies the following conditions for all <math>a, b, c \in P:</math>
# [[Transitive relation|Transitivity]]: if <math>a < b</math> and <math>b < c</math> then <math>a < c</math>.
# [[Irreflexive relation|Irreflexivity]]: <math>\neg\left( a < a \right)</math>, i.e. no element is related to itself (also called anti-reflexive).
# [[Asymmetric relation|Asymmetry]]: if <math>a < b</math> then not <math>b < a</math>.
# [[Transitive relation|Transitivity]]: if <math>a < b</math> and <math>b < c</math> then <math>a < c</math>.
 
A transitive relation is asymmetric if and only if it is irreflexive.<ref name="Flaška 2007">{{cite journal |last1=Flaška |first1=V. |last2=Ježek |first2=J. |last3=Kepka |first3=T. |last4=Kortelainen |first4=J. |title=Transitive Closures of Binary Relations I |journal=Acta Universitatis Carolinae. Mathematica et Physica |year=2007 |volume=48 |issue=1 |pages=55–69 |publisher=School of Mathematics – Physics Charles University |___location=Prague |url=http://dml.cz/dmlcz/142762 }} Lemma 1.1 (iv). This source refers to asymmetric relations as "strictly antisymmetric".</ref> So the definition is the same if it omits either irreflexivity or asymmetry (but not both).
Line 44:
== Notation ==
 
Given a set <math>P</math> and a partial order relation, typically the non-strict partial order <math>\leq</math>, we may uniquely extend our notation to define four partial order relations <math>\leq,</math> <math><,</math> <math>\geq,</math> and <math>></math>, where <math>\leq</math> is a non-strict partial order relation on <math>P</math>, <math> < </math> is the associated strict partial order relation on <math>P</math> (the [[irreflexive kernel]] of <math>\leq</math>), <math>\geq</math> is the dual of <math>\leq</math>, and <math> > </math> is the dual of <math> < </math>. Strictly speaking, the term ''partially ordered set'' refers to a set with all of these relations defined appropriately. But practically, one need only consider a single relation, <math>(P,\leq)</math> or <math>(P,<)</math>, or, in rare instances, the non-strict and strict relations together, <math>(P,\leq,<)</math>.<ref>{{cite book |last1=Avigad |first1=Jeremy |last2=Lewis |first2=Robert Y. |last3=van Doorn |first3=Floris |title=Logic and Proof |date=29 March 2021 |edition=Release 3.18.4 |url=https://leanprover.github.io/logic_and_proof/relations.html#more-on-orderings |access-date=24 July 2021 |chapter=13.2. More on Orderings |quote=So we can think of every partial order as really being a pair, consisting of a weak partial order and an associated strict one. |archive-date=3 April 2023 |archive-url=https://web.archive.org/web/20230403074506/https://leanprover.github.io/logic_and_proof/relations.html#more-on-orderings |url-status=dead }}</ref>
 
The term ''ordered set'' is sometimes used as a shorthand for ''partially ordered set'', as long as it is clear from the context that no other kind of order is meant. In particular, [[Total order|totally ordered sets]] can also be referred to as "ordered sets", especially in areas where these structures are more common than posets. Some authors use different symbols than <math>\leq</math> such as <math>\sqsubseteq</math><ref>{{cite web |last1=Rounds |first1=William C. |title=Lectures slides |url=http://www.eecs.umich.edu/courses/eecs203-1/203-Mar7.pdf |website=EECS 203: DISCRETE MATHEMATICS |access-date=23 July 2021 |date=7 March 2002}}</ref> or <math>\preceq</math><ref>{{cite book |last1=Kwong |first1=Harris |title=A Spiral Workbook for Discrete Mathematics |date=25 April 2018 |url=https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/A_Spiral_Workbook_for_Discrete_Mathematics_(Kwong)/07%3A_Relations/7.04%3A_Partial_and_Total_Ordering |access-date=23 July 2021 |language=en |chapter=7.4: Partial and Total Ordering}}</ref> to distinguish partial orders from total orders.