Content deleted Content added
(7 intermediate revisions by 7 users not shown) | |||
Line 1:
{{short description|Statistical modeling framework}}
'''Dynamic causal modeling''' ('''DCM''') is a framework for specifying models, fitting them to data and comparing their evidence using [[Bayes factor|Bayesian model comparison]]. It uses nonlinear [[State space|state-space]] models in continuous time, specified using [[Stochastic differential equation|stochastic]] or [[ordinary differential equation]]s. DCM was initially developed for testing hypotheses about [[Dynamical system|neural dynamics]].<ref name="Friston 2003">{{Cite journal|last1=Friston|first1=K.J.|last2=Harrison|first2=L.|last3=Penny|first3=W.|date=August 2003|title=Dynamic causal modelling|journal=NeuroImage|volume=19|issue=4|pages=1273–1302|doi=10.1016/s1053-8119(03)00202-7|pmid=12948688|s2cid=2176588|issn=1053-8119}}</ref> In this setting, differential equations describe the interaction of neural populations, which directly or indirectly give rise to functional neuroimaging data e.g., [[functional magnetic resonance imaging]] (fMRI), [[magnetoencephalography]] (MEG) or [[electroencephalography]] (EEG). Parameters in these models quantify the directed influences or effective connectivity among neuronal populations, which are estimated from the data using [[Bayesian inference|Bayesian]] statistical methods.
Line 37 ⟶ 36:
The neural model in DCM for fMRI is a [[Taylor series|Taylor approximation]] that captures the gross causal influences between brain regions and their change due to experimental inputs (see picture). This is coupled with a detailed biophysical model of the generation of the blood oxygen level dependent (BOLD) response and the MRI signal,<ref name="Friston 2003"/> based on the Balloon model of Buxton et al.,<ref>{{Cite journal|last1=Buxton|first1=Richard B.|last2=Wong|first2=Eric C.|last3=Frank|first3=Lawrence R.|date=June 1998|title=Dynamics of blood flow and oxygenation changes during brain activation: The balloon model|journal=Magnetic Resonance in Medicine|volume=39|issue=6|pages=855–864|doi=10.1002/mrm.1910390602|issn=0740-3194|pmid=9621908|s2cid=2002497}}</ref> which was supplemented with a model of neurovascular coupling.<ref>{{Cite journal|last1=Friston|first1=K.J.|last2=Mechelli|first2=A.|last3=Turner|first3=R.|last4=Price|first4=C.J.|date=October 2000|title=Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics|journal=NeuroImage|volume=12|issue=4|pages=466–477|doi=10.1006/nimg.2000.0630|pmid=10988040|s2cid=961661|issn=1053-8119}}</ref><ref>{{Cite journal|last1=Stephan|first1=Klaas Enno|last2=Weiskopf|first2=Nikolaus|last3=Drysdale|first3=Peter M.|last4=Robinson|first4=Peter A.|last5=Friston|first5=Karl J.|date=November 2007|title=Comparing hemodynamic models with DCM|journal=NeuroImage|volume=38|issue=3|pages=387–401|doi=10.1016/j.neuroimage.2007.07.040|pmid=17884583|pmc=2636182|issn=1053-8119}}</ref> Additions to the neural model have included interactions between excitatory and inhibitory neural populations <ref>{{Cite journal|last1=Marreiros|first1=A.C.|last2=Kiebel|first2=S.J.|last3=Friston|first3=K.J.|date=January 2008|title=Dynamic causal modelling for fMRI: A two-state model|journal=NeuroImage|volume=39|issue=1|pages=269–278|doi=10.1016/j.neuroimage.2007.08.019|pmid=17936017|issn=1053-8119|citeseerx=10.1.1.160.1281|s2cid=9731930}}</ref> and non-linear influences of neural populations on the coupling between other populations.<ref name="Stephan 2008">{{Cite journal|last1=Stephan|first1=Klaas Enno|last2=Kasper|first2=Lars|last3=Harrison|first3=Lee M.|last4=Daunizeau|first4=Jean|last5=den Ouden|first5=Hanneke E.M.|last6=Breakspear|first6=Michael|last7=Friston|first7=Karl J.|date=August 2008|title=Nonlinear dynamic causal models for fMRI|journal=NeuroImage|volume=42|issue=2|pages=649–662|doi=10.1016/j.neuroimage.2008.04.262|issn=1053-8119|pmc=2636907|pmid=18565765}}</ref>
DCM for resting state studies was first introduced in Stochastic DCM,<ref>{{Cite journal|date=2011-09-15|title=Generalised filtering and stochastic DCM for fMRI|url= https://www.zora.uzh.ch/id/eprint/49235/1/Li_Neuroimage_2011.pdf|journal=NeuroImage|volume=58|issue=2|pages=442–457|doi=10.1016/j.neuroimage.2011.01.085|pmid=21310247|issn=1053-8119|last1=Li|first1=Baojuan|last2=Daunizeau|first2=Jean|last3=Stephan|first3=Klaas E|last4=Penny|first4=Will|last5=Hu|first5=Dewen|last6=Friston|first6=Karl|s2cid=13956458}}</ref> which estimates both neural fluctuations and connectivity parameters in the time ___domain, using [[Generalized filtering|Generalized Filtering]]. A more efficient scheme for resting state data was subsequently introduced which operates in the frequency ___domain, called DCM for Cross-Spectral Density (CSD).<ref>{{Cite journal|last1=Friston|first1=Karl J.|last2=Kahan|first2=Joshua|last3=Biswal|first3=Bharat|last4=Razi|first4=Adeel|date=July 2014|title=A DCM for resting state fMRI|journal=NeuroImage|volume=94|issue=100 |pages=396–407|doi=10.1016/j.neuroimage.2013.12.009|pmid=24345387|pmc=4073651|issn=1053-8119}}</ref><ref>{{Cite journal|last1=Razi|first1=Adeel|last2=Kahan|first2=Joshua|last3=Rees|first3=Geraint|last4=Friston|first4=Karl J.|date=February 2015|title=Construct validation of a DCM for resting state fMRI|journal=NeuroImage|volume=106|pages=1–14|doi=10.1016/j.neuroimage.2014.11.027|issn=1053-8119|pmc=4295921|pmid=25463471}}</ref> Both of these can be applied to large-scale brain networks by constraining the connectivity parameters based on the functional connectivity.<ref>{{Cite journal|last1=Seghier|first1=Mohamed L.|last2=Friston|first2=Karl J.|date=March 2013|title=Network discovery with large DCMs|journal=NeuroImage|volume=68|pages=181–191|doi=10.1016/j.neuroimage.2012.12.005|issn=1053-8119|pmc=3566585|pmid=23246991}}</ref><ref name="Razi 2017">{{Cite journal|last1=Razi|first1=Adeel|last2=Seghier|first2=Mohamed L.|last3=Zhou|first3=Yuan|last4=McColgan|first4=Peter|last5=Zeidman|first5=Peter|last6=Park|first6=Hae-Jeong|last7=Sporns|first7=Olaf|last8=Rees|first8=Geraint|last9=Friston|first9=Karl J.|date=October 2017|title=Large-scale DCMs for resting-state fMRI|journal=Network Neuroscience|volume=1|issue=3|pages=222–241|doi=10.1162/netn_a_00015|issn=2472-1751|pmc=5796644|pmid=29400357}}</ref> Another recent development for resting state analysis is Regression DCM<ref>{{Cite journal|last1=Frässle|first1=Stefan|last2=Lomakina|first2=Ekaterina I.|last3=Razi|first3=Adeel|last4=Friston|first4=Karl J.|last5=Buhmann|first5=Joachim M.|last6=Stephan|first6=Klaas E.|date=July 2017|title=Regression DCM for fMRI|journal=NeuroImage|volume=155|pages=406–421|doi=10.1016/j.neuroimage.2017.02.090|pmid=28259780|issn=1053-8119|doi-access=free|hdl=20.500.11850/182456|hdl-access=free}}</ref> implemented in the Tapas software collection (see [[#Software implementations|Software implementations]]). Regression DCM operates in the frequency ___domain, but linearizes the model under certain simplifications, such as having a fixed (canonical) haemodynamic response function. The enables rapid estimation of large-scale brain networks.
[[File:DCM for ERP and CMC.svg|thumb|Models of the cortical column used in EEG/MEG/LFP analysis. Self-connections on each population are present but not shown for clarity. Left: DCM for ERP. Right: Canonical Microcircuit (CMC). 1=spiny stellate cells (layer IV), 2=inhibitory interneurons, 3=(deep) pyramidal cells and 4=superficial pyramidal cells.]]
=== EEG / MEG ===
DCM for EEG and MEG data use more biologically detailed neural models than fMRI, due to the higher temporal resolution of these measurement techniques. These can be classed into physiological models, which recapitulate neural circuitry, and phenomenological models, which focus on reproducing particular data features. The physiological models can be further subdivided into two classes. [http://www.scholarpedia.org/article/Conductance-based_models Conductance-based models] derive from the equivalent circuit representation of the cell membrane developed by Hodgkin and Huxley in the 1950s.<ref name="Hodgkin 1952">{{Cite journal|last1=Hodgkin|first1=A. L.|last2=Huxley|first2=A. F.|date=1952-04-28|title=The components of membrane conductance in the giant axon ofLoligo|journal=The Journal of Physiology|volume=116|issue=4|pages=473–496|doi=10.1113/jphysiol.1952.sp004718|pmid=14946714|issn=0022-3751|pmc=1392209}}</ref> Convolution models were introduced by [[Wilson–Cowan model|Wilson & Cowan]]<ref>{{Cite journal|author2-link=Jack D. Cowan|last1=Wilson|first1=H. R.|last2=Cowan|first2=J. D.|date=September 1973|title=A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue|journal=Kybernetik|volume=13|issue=2|pages=55–80|doi=10.1007/bf00288786|pmid=4767470|s2cid=292546|issn=0340-1200}}</ref> and Freeman <ref>{{Cite book|date=1975|title=Mass Action in the Nervous System|doi=10.1016/c2009-0-03145-6|isbn=9780122671500|last1=Freeman|first1=Walter J}}</ref> in the 1970s and involve a convolution of pre-synaptic input by a synaptic kernel function. Some of the specific models used in DCM are as follows:
* Physiological models:
Line 57 ⟶ 56:
== Model estimation ==
Model inversion or estimation is implemented in DCM using [[Variational Bayesian methods|variational Bayes]] under the [[Laplace's method|Laplace assumption]].<ref>{{Citation|last1=Friston|first1=K.|date=2007|pages=606–618|publisher=Elsevier|isbn=9780123725608|last2=Mattout|first2=J.|last3=Trujillo-Barreto|first3=N.|last4=Ashburner|first4=J.|last5=Penny|first5=W.|doi=10.1016/b978-012372560-8/50047-4|chapter=Variational Bayes under the Laplace approximation|title=Statistical Parametric Mapping}}</ref> This provides two useful quantities: the log marginal likelihood or model evidence <math>\ln{p(y|m)}</math> is the probability of observing of the data under a given model. Generally, this cannot be calculated explicitly and is approximated by a quantity called the negative variational free energy <math>F</math>, referred to in machine learning as the Evidence Lower Bound (ELBO). Hypotheses are tested by comparing the evidence for different models based on their free energy, a procedure called Bayesian model comparison.
Model estimation also provides estimates of the parameters <math>p(\theta|y)</math>, for example connection strengths, which maximise the free energy. Where models differ only in their priors, [[Bayesian model reduction|Bayesian Model Reduction]] can be used to derive the evidence and parameters of nested or reduced models analytically and efficiently.
Line 79 ⟶ 78:
* Face validity establishes whether the parameters of a model can be recovered from simulated data. This is usually performed alongside the development of each new model (E.g.<ref name="Friston 2003" /><ref name="Stephan 2008" />).
* Construct validity assesses consistency with other analytical methods. For example, DCM has been compared with Structural Equation Modelling <ref>{{Cite journal|last1=Penny|first1=W.D.|last2=Stephan|first2=K.E.|last3=Mechelli|first3=A.|last4=Friston|first4=K.J.|date=January 2004|title=Modelling functional integration: a comparison of structural equation and dynamic causal models|journal=NeuroImage|volume=23|pages=S264–S274|doi=10.1016/j.neuroimage.2004.07.041|pmid=15501096|issn=1053-8119|citeseerx=10.1.1.160.3141|s2cid=8993497}}</ref> and other neurobiological computational models.<ref>{{Cite journal|last1=Lee|first1=Lucy|last2=Friston|first2=Karl|last3=Horwitz|first3=Barry|date=May 2006|title=Large-scale neural models and dynamic causal modelling|journal=NeuroImage|volume=30|issue=4|pages=1243–1254|doi=10.1016/j.neuroimage.2005.11.007|pmid=16387513|s2cid=19003382|issn=1053-8119}}</ref>
* Predictive validity assesses the ability to predict known or expected effects. This has included testing against iEEG / EEG / stimulation <ref>{{Cite journal|last1=David|first1=Olivier|last2=Guillemain|first2=Isabelle|last3=Saillet|first3=Sandrine|last4=Reyt|first4=Sebastien|last5=Deransart|first5=Colin|last6=Segebarth|first6=Christoph|last7=Depaulis|first7=Antoine|date=2008-12-23|title=Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation|journal=PLOS Biology|volume=6|issue=12|pages=2683–97|doi=10.1371/journal.pbio.0060315|issn=1545-7885|pmc=2605917|pmid=19108604 |doi-access=free }}</ref><ref>{{Cite journal|last1=David|first1=Olivier|last2=Woźniak|first2=Agata|last3=Minotti|first3=Lorella|last4=Kahane|first4=Philippe|date=February 2008|title=Preictal short-term plasticity induced by intracerebral 1 Hz stimulation|journal=NeuroImage|volume=39|issue=4|pages=1633–1646|doi=10.1016/j.neuroimage.2007.11.005|pmid=18155929|s2cid=3415312|issn=1053-8119|url=https://www.hal.inserm.fr/inserm-00381199/file/David_Manuscript.pdf}}</ref><ref>{{Cite journal|last1=Reyt|first1=Sébastien|last2=Picq|first2=Chloé|last3=Sinniger|first3=Valérie|last4=Clarençon|first4=Didier|last5=Bonaz|first5=Bruno|last6=David|first6=Olivier|date=October 2010|title=Dynamic Causal Modelling and physiological confounds: A functional MRI study of vagus nerve stimulation|journal=NeuroImage|volume=52|issue=4|pages=1456–1464|doi=10.1016/j.neuroimage.2010.05.021|pmid=20472074|s2cid=1668349|issn=1053-8119|url=https://www.hal.inserm.fr/inserm-00498678/file/Manuscript_Author.pdf}}</ref><ref>{{Cite journal|last1=Daunizeau|first1=J.|last2=Lemieux|first2=L.|last3=Vaudano|first3=A. E.|last4=Friston|first4=K. J.|last5=Stephan|first5=K. E.|date=2013|title=An electrophysiological validation of stochastic DCM for fMRI|journal=Frontiers in Computational Neuroscience|volume=6|pages=103|doi=10.3389/fncom.2012.00103|pmid=23346055|pmc=3548242|issn=1662-5188|doi-access=free}}</ref> and against known pharmacological treatments.<ref>{{Cite journal|last1=Moran|first1=Rosalyn J.|author1-link=Rosalyn Moran|last2=Symmonds|first2=Mkael|last3=Stephan|first3=Klaas E.|last4=Friston|first4=Karl J.|last5=Dolan|first5=Raymond J.|date=August 2011|title=An In Vivo Assay of Synaptic Function Mediating Human Cognition|journal=Current Biology|volume=21|issue=15|pages=1320–1325|doi=10.1016/j.cub.2011.06.053|pmid=21802302|pmc=3153654|issn=0960-9822}}</ref><ref>{{Cite journal|last1=Moran|first1=Rosalyn J.|author1-link=Rosalyn Moran|last2=Jung|first2=Fabienne|last3=Kumagai|first3=Tetsuya|last4=Endepols|first4=Heike|last5=Graf|first5=Rudolf|last6=Dolan|first6=Raymond J.|last7=Friston|first7=Karl J.|last8=Stephan|first8=Klaas E.|last9=Tittgemeyer|first9=Marc|date=2011-08-02|title=Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents|journal=PLOS ONE|volume=6|issue=8|pages=e22790|doi=10.1371/journal.pone.0022790|pmid=21829652|pmc=3149050|bibcode=2011PLoSO...622790M|issn=1932-6203|doi-access=free}}</ref>
== Limitations / drawbacks ==
DCM is a hypothesis-driven approach for investigating the interactions among pre-defined regions of interest. It is not ideally suited for exploratory analyses.<ref name="Stephan 2010" /> Although methods have been implemented for automatically searching over reduced models ([[Bayesian model reduction|Bayesian Model Reduction]]) and for modelling large-scale brain networks,<ref name="Razi 2017" /> these methods require an explicit specification of model space. In neuroimaging, approaches such as [[Psychophysiological Interaction|psychophysiological interaction (PPI)]] analysis may be more appropriate for exploratory use; especially for discovering key nodes for subsequent DCM analysis.
The variational Bayesian methods used for model estimation in DCM are based on the Laplace assumption, which treats the posterior over parameters as Gaussian. This approximation can fail in the context of highly non-linear models, where local minima may preclude the free energy from serving as a tight bound on log model evidence. Sampling approaches provide the gold standard; however, they are time
== Software implementations ==
DCM is implemented in the [[Statistical parametric mapping|Statistical Parametric Mapping]] software package, which serves as the canonical or reference implementation (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). It has been re-implemented and developed in the Tapas software collection (https://www.tnu.ethz.ch/en/software/tapas.html {{Webarchive|url=https://web.archive.org/web/20190203134649/https://www.tnu.ethz.ch/en/software/tapas.html |date=2019-02-03 }}) and the VBA toolbox (https://mbb-team.github.io/VBA-toolbox/).
== References ==
Line 93 ⟶ 92:
== Further reading ==
{{Scholia}}
* [http://www.scholarpedia.org/article/Dynamic_causal_modeling Dynamic Causal Modelling on Scholarpedia]
* Understanding DCM: ten simple rules for the clinician<ref>{{Cite journal|last1=Kahan|first1=Joshua|last2=Foltynie|first2=Tom|date=December 2013|title=Understanding DCM: Ten simple rules for the clinician|journal=NeuroImage|volume=83|pages=542–549|doi=10.1016/j.neuroimage.2013.07.008|pmid=23850463|issn=1053-8119|doi-access=free}}</ref>
|