Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: url, isbn, pages, year, title, chapter, s2cid, pmc, authors 1-2. | Use this bot. Report bugs. | Suggested by Chris Capoccia | #UCB_toolbar |
Erel Segal (talk | contribs) No edit summary |
||
(30 intermediate revisions by 23 users not shown) | |||
Line 1:
{{Short description|Computing the fixed point of a function}}
'''Fixed-point computation''' refers to the process of computing an exact or approximate [[Fixed point (mathematics)|fixed point]] of a given function.<ref name=":1">{{cite book |doi=10.1007/978-3-642-50327-6 |title=The Computation of Fixed Points and Applications |series=Lecture Notes in Economics and Mathematical Systems |year=1976 |volume=124 |isbn=978-3-540-07685-8 }}{{pn}}</ref> In its most common form, we are given a function ''f'' that satisfies the condition to the [[Brouwer fixed-point theorem]], that is: ''f'' is continuous and maps the unit [[N-cube|''d''-cube]] to itself. The [[Brouwer fixed-point theorem]] guarantees that ''f'' has a fixed point, but the proof is not constructive. Various algorithms have been devised for computing an approximate fixed point. Such algorithms are used in economics for computing a [[market equilibrium]], in game theory for computing a [[Nash equilibrium]], and in [[dynamic system]] analysis.▼
{{CS1 config|mode=cs1}}
▲'''Fixed-point computation''' refers to the process of computing an exact or approximate [[Fixed point (mathematics)|fixed point]] of a given function.<ref name=":1">{{cite book |doi=10.1007/978-3-642-50327-6 |title=The Computation of Fixed Points and Applications |series=Lecture Notes in Economics and Mathematical Systems |year=1976 |volume=124 |isbn=978-3-540-07685-8
* [[Nash equilibrium computation]],
* [[Market equilibrium computation]],
* [[Dynamic system]] analysis.
== Definitions ==
[[File:Fixed point example.svg|alt=an example function with three fixed points|thumb|The graph of an example function with three fixed points]]
The unit interval is denoted by
A '''fixed point''' of
* The '''residual criterion''': given an approximation parameter <math>\varepsilon>0</math> , An '''{{mvar|ε}}-residual fixed-point of''' '''
* The '''absolute criterion''': given an approximation parameter <math>\delta>0</math>, A '''δ-absolute fixed-point of''' '''
* The '''relative criterion''': given an approximation parameter <math>\delta>0</math>, A '''δ-relative fixed-point of''' '''
For Lipschitz-continuous functions, the absolute criterion is stronger than the residual criterion: If
The most basic step of a fixed-point computation algorithm is a '''value query''': given any
The function
▲The function ''f'' is accessible via '''evaluation''' queries: for any ''x'', the algorithm can evaluate ''f''(''x''). The run-time complexity of an algorithm is usually given by the number of required evaluations.
== Contractive functions ==
A Lipschitz-continuous function with constant
[[File:Fixed point anime.gif|alt=computing a fixed point using function iteration|thumb|Computing a fixed point using function iteration]]
The first algorithm for fixed-point computation was the '''[[fixed-point iteration]]''' algorithm of Banach. [[Banach fixed point theorem|Banach's fixed-point theorem]] implies that, when fixed-point iteration is applied to a contraction mapping, the error after
When <math>L</math> < 1 and ''d'' = 1, the optimal algorithm is the '''Fixed Point Envelope''' (FPE) algorithm of Sikorski and Wozniakowski.<ref name=":5" /> It finds a ''δ''-relative fixed point using <math>O(\log(1/\delta) + \log \log(1/(1-L))) </math> queries, and a ''δ''-absolute fixed point using <math>O(\log(1/\delta)) </math> queries. This is
▲The first algorithm for fixed-point computation was the [[fixed-point iteration]] algorithm of Banach. [[Banach fixed point theorem|Banach's fixed-point theorem]] implies that, when fixed-point iteration is applied to a contraction mapping, the error after ''t'' iterations is in <math>O(L^t)</math>. Therefore, the number of evaluations required for a ''δ''-relative fixed-point is approximately <math>\log_L(\delta) = \log(\delta)/\log(L) = \log(1/\delta)/\log(1/L) </math>. Sikorski and Wozniakowski<ref name=":5">{{cite journal |last1=Sikorski |first1=K |last2=Woźniakowski |first2=H |title=Complexity of fixed points, I |journal=Journal of Complexity |date=December 1987 |volume=3 |issue=4 |pages=388–405 |doi=10.1016/0885-064X(87)90008-2 }}</ref> showed that Banach's algorithm is optimal when the dimension is large. Specifically, when <math>d\geq \log(1/\delta)/\log(1/L) </math>, the number of required evaluations of ''any'' algorithm for ''δ''-relative fixed-point is larger than 50% the number of evaluations required by the iteration algorithm. Note that when ''L'' approaches 1, the number of evaluations approaches infinity. In fact, no finite algorithm can compute a ''δ''-absolute fixed point for all functions with L=1.<ref name=":4">{{cite book |last1=Sikorski |first1=Krzysztof A. |title=Optimal Solution of Nonlinear Equations |date=2001 |publisher=Oxford University Press |isbn=978-0-19-510690-9 }}{{pn}}</ref>
When <math>d>1</math> but not too large, and <math>L\le 1</math>, the optimal algorithm is the interior-ellipsoid algorithm (based on the [[ellipsoid method]]).<ref>{{cite journal |last1=Huang |first1=Z |last2=Khachiyan |first2=L |last3=Sikorski |first3=K |title=Approximating Fixed Points of Weakly Contracting Mappings |journal=Journal of Complexity |date=June 1999 |volume=15 |issue=2 |pages=200–213 |doi=10.1006/jcom.1999.0504 |doi-access=free }}</ref> It finds an {{mvar|ε}}-residual fixed-point using <math>O(d\cdot \log(1/\varepsilon)) </math> evaluations. When <math>L<1</math>, it finds a <math>\delta</math>-absolute fixed point using <math>O(d\cdot [\log(1/\delta) + \log(1/(1-L))]) </math> evaluations.
▲When L<1 and ''d''=1, the optimal algorithm is the Fixed Point Envelope (FPE) algorithm of Sikorski and Wozniakowski.<ref name=":5" /> It finds a ''δ''-relative fixed point using <math>O(\log(1/\delta) + \log \log(1/(1-L))) </math> queries, and a ''δ''-absolute fixed point using <math>O(\log(1/\delta)) </math> queries. This is much faster than the fixed-point iteration algorithm.<ref>{{cite book |doi=10.1007/978-1-4615-9552-6_4 |chapter=Fast Algorithms for the Computation of Fixed Points |title=Robustness in Identification and Control |year=1989 |last1=Sikorski |first1=K. |pages=49–58 |isbn=978-1-4615-9554-0 }}</ref>
Shellman and Sikorski<ref
=== Algorithms for differentiable functions ===
When the function
== General functions ==
For functions with Lipschitz constant
=== One dimension ===
For a 1-dimensional function (''d'' = 1), a
=== Two or more dimensions
For functions in two or more dimensions, the problem is much more challenging. Shellman and Sikorski<ref name=":3" /> proved that
Several algorithms based on function evaluations have been developed for finding an {{mvar|ε}}-residual fixed-point
* The first algorithm to approximate a fixed point of a general function was developed by [[Herbert Scarf]] in 1967.<ref>{{cite journal |last1=Scarf |first1=Herbert |title=The Approximation of Fixed Points of a Continuous Mapping |journal=SIAM Journal on Applied Mathematics |date=September 1967 |volume=15 |issue=5 |pages=1328–1343 |doi=10.1137/0115116 }}</ref><ref>H. Scarf found the first algorithmic proof: {{SpringerEOM|title=Brouwer theorem|first=M.I.|last=Voitsekhovskii|isbn=1-4020-0609-8}}.</ref> Scarf's algorithm finds an {{mvar|ε}}-residual fixed-point by finding a fully
* A later algorithm by [[Harold W. Kuhn|Harold Kuhn]]<ref>{{Cite journal |last=Kuhn |first=Harold W. |date=1968 |title=Simplicial Approximation of Fixed Points |jstor=58762 |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=61 |issue=4 |pages=1238–1242 |doi=10.1073/pnas.61.4.1238 |pmid=16591723 |pmc=225246 |doi-access=free }}</ref> used simplices and simplicial partitions instead of primitive sets.
* Developing the simplicial approach further, Orin Harrison Merrill<ref>{{cite thesis |last1=
* B. Curtis Eaves<ref>{{cite journal |last1=Eaves |first1=B. Curtis |title=Homotopies for computation of fixed points |journal=Mathematical Programming |date=December 1972 |volume=3-3 |issue=1 |pages=1–22 |doi=10.1007/BF01584975 |s2cid=39504380 }}</ref> presented the
* A book by Michael Todd<ref name=":1" /> surveys various algorithms developed until 1976. * [[David Gale]]<ref>{{cite journal |first1=David |last1=Gale |year=1979 |title=The Game of Hex and Brouwer Fixed-Point Theorem |journal=The American Mathematical Monthly |volume=86 |issue=10 |pages=818–827 |doi=10.2307/2320146 |jstor=2320146 }}</ref> showed that computing a fixed point of an ''n''-dimensional function (on the unit ''d''-dimensional cube) is equivalent to deciding who is the winner in
** Construct a Hex board of size ''kd'', where
** Compute the difference
** Label the vertex ''z'' by a label in 1, ..., ''d'', denoting the largest coordinate in the difference vector.
** The resulting labeling corresponds to a possible play of the ''d''-dimensional Hex game among ''d'' players. This game must have a winner, and Gale presents an algorithm for constructing the winning path.
** In the winning path, there must be a point in which ''f<sub>i</sub>''(''z''/''k'') - ''z''/''k'' is positive, and an adjacent point in which ''f<sub>i</sub>''(''z''/''k'') - ''z''/''k'' is negative. This means that there is a fixed point of <math>f</math> between these two points.
In the worst case, the number of function evaluations required by all these algorithms is exponential in the binary representation of the accuracy, that is, in <math>\Omega(1/\varepsilon)</math>.
====
Hirsch, [[Christos Papadimitriou|Papadimitriou]] and Vavasis proved that<ref name=":0">{{cite journal |last1=Hirsch |first1=Michael D |last2=Papadimitriou |first2=Christos H |last3=Vavasis |first3=Stephen A |title=Exponential lower bounds for finding Brouwer fix points |journal=Journal of Complexity |date=December 1989 |volume=5 |issue=4 |pages=379–416 |doi=10.1016/0885-064X(89)90017-4 |s2cid=1727254 }}</ref> ''any'' algorithm based on function evaluations, that finds an {{mvar|ε}}-residual fixed-point of ''f,'' requires <math>\Omega(L'/\varepsilon)</math> function evaluations, where <math>L'</math> is the Lipschitz constant of the function <math>f(x)-x</math> (note that <math>L-1 \leq L' \leq L+1</math>). More precisely:
* For a 2-dimensional function (''d''=2), they prove a tight bound <math>\Theta(L'/\varepsilon)</math>.
* For any d ≥ 3, finding an {{mvar|ε}}-residual fixed-point of a ''d''-dimensional function requires <math>\Omega((L'/\varepsilon)^{d-2})</math> queries and <math>O((L'/\varepsilon)^{d})</math> queries.
The latter result leaves a gap in the exponent. Chen and Deng<ref name=":2" /> closed the gap. They proved that, for any ''d'' ≥ 2 and <math>1/\varepsilon > 4 d</math> and <math>L'/\varepsilon > 192 d^3</math>, the number of queries required for computing an {{mvar|ε}}-residual fixed-point is in <math>\Theta((L'/\varepsilon)^{d-1})</math>.
== Discrete fixed-point computation ==
A '''discrete function''' is a function defined on a subset of ''<math>\mathbb{Z}^d</math>'' (the ''d''-dimensional integer grid). There are several [[
Let
Chen and Deng<ref>{{cite journal |last1=Chen |first1=Xi |last2=Deng |first2=Xiaotie |title=On the complexity of 2D discrete fixed point problem |journal=Theoretical Computer Science |date=October 2009 |volume=410 |issue=44 |pages=4448–4456 |doi=10.1016/j.tcs.2009.07.052 |s2cid=2831759 }}</ref> define a different discrete-fixed-point problem, which they call '''2D-BROUWER'''. It considers a discrete function
== Relation between fixed-point computation and root-finding algorithms ==
Given a function
Fixed-point computation is a special case of root-finding: given a function
The opposite is not true: finding an approximate root of a general function may be harder than finding an approximate fixed point. In particular, Sikorski<ref>{{cite journal |last1=Sikorski |first1=K. |title=Optimal solution of nonlinear equations satisfying a Lipschitz condition |journal=Numerische Mathematik |date=June 1984 |volume=43 |issue=2 |pages=225–240 |doi=10.1007/BF01390124 |s2cid=120937024 }}</ref> proved that finding an {{mvar|ε}}-root requires <math>\Omega(1/\varepsilon^d)</math> function evaluations. This gives an exponential lower bound even for a one-dimensional function (in contrast, an {{mvar|ε}}-residual fixed-point of a one-dimensional function can be found using <math>O(\log(1/\varepsilon))</math> queries using the [[bisection method]]). Here is a proof sketch.<ref name=":0" />{{Rp|page=35}} Construct a function
However, there are classes of functions for which finding an approximate root is equivalent to finding an approximate fixed point. One example<ref name=":2">{{cite book |doi=10.1145/1060590.1060638 |chapter=On algorithms for discrete and approximate brouwer fixed points |title=Proceedings of the thirty-seventh annual ACM symposium on Theory of computing |year=2005 |last1=Chen |first1=Xi |last2=Deng |first2=Xiaotie |pages=323–330 |isbn=1581139608 |s2cid=16942881 }}</ref> is the class of functions
== Communication complexity ==
Roughgarden and Weinstein<ref>{{cite book |doi=10.1109/FOCS.2016.32 |chapter=On the Communication Complexity of Approximate Fixed Points |title=2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS) |year=2016 |last1=Roughgarden |first1=Tim |last2=Weinstein |first2=Omri |pages=229–238 |isbn=978-1-5090-3933-3 |s2cid=87553 }}</ref> studied the [[communication complexity]] of computing an approximate fixed-point. In their model, there are two agents: one of them knows a function
== Further reading ==▼
* Equilibria, fixed points, and complexity classes: a survey.<ref>{{cite journal |last1=Yannakakis |first1=Mihalis |title=Equilibria, fixed points, and complexity classes |journal=Computer Science Review |date=May 2009 |volume=3 |issue=2 |pages=71–85 |doi=10.1016/j.cosrev.2009.03.004 |url=https://drops.dagstuhl.de/opus/volltexte/2008/1311/ }}</ref>▼
== References ==
{{reflist}}
▲== Further reading ==
▲*
[[Category:Fixed-point theorems]]
|