Content deleted Content added
→Hardware support: Added info Tags: Mobile edit Mobile web edit Advanced mobile edit |
→Details: Added link. Tags: Mobile edit Mobile app edit Android app edit App select source |
||
(10 intermediate revisions by 8 users not shown) | |||
Line 14:
==Details==
The TEE typically consists of a hardware isolation mechanism plus a secure operating system running on top of that isolation mechanism, although the term has been used more generally to mean a protected solution.<ref>{{cite book |last1=Sabt |first1=M |title=2015 IEEE Trustcom/BigDataSE/ISPA |pages=57–64 |last2=Achemlal |first2=M |last3=Bouabdallah |first3=A |chapter=Trusted Execution Environment: What It is, and What It is Not |publisher=IEEE |doi=10.1109/Trustcom.2015.357 |year=2015 |isbn=978-1-4673-7952-6 |s2cid=206775888 |url=https://hal.archives-ouvertes.fr/hal-01246364/file/trustcom_2015_tee_what_it_is_what_it_is_not.pdf |access-date=2020-04-19 |archive-date=2020-07-18 |archive-url=https://web.archive.org/web/20200718094655/https://hal.archives-ouvertes.fr/hal-01246364/file/trustcom_2015_tee_what_it_is_what_it_is_not.pdf |url-status=live }}</ref><ref>{{cite journal |last1=Pinto |first1=S. |last2=Santos |first2=N. |date=2019 |title=Demystifying Arm TrustZone: A Comprehensive Survey |url=https://doi.org/10.1145/3291047 |journal=ACM Computing Surveys |volume=51 |pages=1–36 | doi=10.1145/3291047|s2cid=59337370 |url-access=subscription }}</ref><ref>{{cite journal |last1=Lee |first1=S |last2=Lee |first2=JH |title=TEE based session key establishment protocol for secure infotainment systems |journal=Design Automation for Embedded Systems |volume=22 |issue=3 |pages=215–224 |publisher=Springer |doi=10.1007/s10617-018-9212-5 |year=2018 |s2cid=52081114 }}</ref><ref>{{cite book |last1=Shepherd |first1=C |title=2016 IEEE Trustcom/BigDataSE/ISPA |pages=168–177 |last2=Arfaoui |first2=G |last3=Gurulian |first3=I |last4=Lee |first4=R |last5=Markantonakis |first5=K |last6=Akram |first6=R |last7=Sauveron |first7=D |last8=Conchon |first8=E |chapter=Secure and Trusted Execution: Past, Present, and Future - A Critical Review in the Context of the Internet of Things and Cyber-Physical Systems |publisher=IEEE |doi=10.1109/TrustCom.2016.0060 |year=2016 |isbn=978-1-5090-3205-1 |s2cid=8717045 |url=https://core.ac.uk/download/pdf/77298166.pdf |access-date=2021-05-14 |archive-date=2021-05-14 |archive-url=https://web.archive.org/web/20210514194356/https://core.ac.uk/download/pdf/77298166.pdf |url-status=live }}</ref> Whilst a GlobalPlatform TEE requires hardware isolation, others, such as EMVCo, use the term TEE to refer to both hardware and software-based solutions.<ref>{{cite web |title=Software-Based Mobile Payment Evaluation Process |url=https://www.emvco.com/processes-forms/product-approval/mobile/sbmp |publisher=EMVCo |access-date=2021-10-13 |archive-date=2021-03-02 |archive-url=https://web.archive.org/web/20210302083210/https://www.emvco.com/processes-forms/product-approval/mobile/sbmp/ |url-status=live }}</ref> FIDO uses the concept of TEE in the restricted operating environment for TEEs based on hardware isolation.<ref>{{cite web |title=FIDO Authenticator Allowed Restricted Operating Environments List |url=https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/fido-authenticator-allowed-restricted-operating-environments-list_20170524.html |publisher=FIDO Alliance |access-date=2021-10-13 |archive-date=2021-07-13 |archive-url=https://web.archive.org/web/20210713153906/https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/fido-authenticator-allowed-restricted-operating-environments-list_20170524.html |url-status=live }}</ref> Only trusted applications running in a TEE have access to the full power of a device's main processor, peripherals, and memory, while hardware isolation protects these from user-installed apps running in a main operating system. Software and
Service providers, [[mobile network operator]]s (MNO), operating system developers, [[Mobile Application Development|application developers]], device manufacturers, platform providers, and silicon vendors are the main stakeholders contributing to the standardization efforts around the TEE.
To prevent the simulation of hardware with user-controlled software, a so-called "hardware root of trust" is used. This is a [[Trusted_computing#Endorsement_key|set of private keys that are embedded directly into the chip during manufacturing]]; one-time programmable memory such as [[eFuse]]s is usually used on mobile devices. These cannot be changed, even after the device resets, and whose public counterparts reside in a manufacturer database, together with a non-secret hash of a public key belonging to the trusted party (usually a chip vendor) which is used to sign trusted firmware alongside the circuits doing cryptographic operations and controlling access.
The hardware is designed in a way
When an application is attested, its untrusted components loads its trusted component into memory; the trusted application is protected from modification by untrusted components with hardware. A [[Cryptographic nonce|nonce]] is requested by the untrusted party from the verifier's server and is used as part of a cryptographic authentication protocol, proving integrity of the trusted application. The proof is passed to the verifier, which verifies it. A valid proof cannot be computed in simulated hardware (i.e. [[QEMU]]) because in order to construct it, access to the keys baked into hardware is required; only trusted firmware has access to these keys and/or the keys derived from them or obtained using them. Because only the platform owner is meant to have access to the data recorded in the foundry, the verifying party must interact with the service set up by the vendor. If the scheme is implemented improperly, the chip vendor can track which applications are used on which chip and selectively deny service by returning a message indicating that authentication has not passed.<ref>{{cite web | url=https://optee.readthedocs.io/en/latest/building/devices/qemu.html | title=QEMU v7 — OP-TEE documentation documentation | access-date=2022-06-02 | archive-date=2022-06-25 | archive-url=https://web.archive.org/web/20220625012352/https://optee.readthedocs.io/en/latest/building/devices/qemu.html | url-status=live }}</ref>
To simulate hardware in a way
Christian Kison, Jürgen Frinken, and Christof Paar - https://www.iacr.org/archive/ches2015/92930620/92930620.pdf {{Webarchive|url=https://web.archive.org/web/20201116132154/https://www.iacr.org/archive/ches2015/92930620/92930620.pdf |date=2020-11-16 }}</ref><ref>{{Cite news |last1=Cassy |first1=John |last2=Murphy |first2=Paul |date=2002-03-13 |title=How codebreakers cracked the secrets of the smart card |language=en-GB |work=The Guardian |url=https://www.theguardian.com/technology/2002/mar/13/media.citynews |access-date=2023-08-09 |issn=0261-3077 |archive-date=2021-04-07 |archive-url=https://web.archive.org/web/20210407025459/https://www.theguardian.com/technology/2002/mar/13/media.citynews |url-status=live }}</ref><ref>{{Cite web |url=https://spectrum.ieee.org/xray-tech-lays-chip-secrets-bare |title=X-Ray Tech Lays Chip Secrets Bare - IEEE Spectrum<!-- Bot generated title --> |date=7 October 2019 |access-date=2020-11-14 |archive-date=2020-12-08 |archive-url=https://web.archive.org/web/20201208180315/https://spectrum.ieee.org/nanoclast/semiconductors/design/xray-tech-lays-chip-secrets-bare |url-status=live }}</ref><ref>Design Principles for Tamper-Resistant Smartcard Processors by Oliver Kömmerling Advanced Digital Security and Markus G. Kuhn University of Cambridge https://www.usenix.org/legacy/events/smartcard99/full_papers/kommerling/kommerling.pdf {{Webarchive|url=https://web.archive.org/web/20210121185937/https://www.usenix.org/legacy/events/smartcard99/full_papers/kommerling/kommerling.pdf |date=2021-01-21 }}</ref> is difficult, or even impossible, if the hardware is designed in such a way that reverse-engineering destroys the keys. In most cases, the keys are unique for each piece of hardware, so that a key extracted from one chip cannot be used by others (for example [[Physical unclonable function|physically unclonable functions]]<ref>{{Cite web|url=https://semiengineering.com/knowledge_centers/semiconductor-security/physically-unclonable-functions/|title=Physically Unclonable Functions (PUFs)|website=Semiconductor Engineering|access-date=2020-11-15|archive-date=2020-11-16|archive-url=https://web.archive.org/web/20201116222448/https://semiengineering.com/knowledge_centers/semiconductor-security/physically-unclonable-functions/|url-status=live}}</ref><ref>Areno, Matthew & Plusquellic, J.. (2012). Securing Trusted Execution Environments with PUF Generated Secret Keys. 1188-1193. 10.1109/TrustCom.2012.255.</ref>).
Though deprivation of ownership is not an inherent property of TEEs (it is possible to design the system in a way that allows only the user who has obtained ownership of the device first to control the system by burning a hash of their own key into e-fuses), in practice all such systems in consumer electronics are intentionally designed so as to allow chip manufacturers to control access to attestation and its algorithms. It allows manufacturers to grant access to TEEs only to software developers who have a (usually commercial) business agreement with the manufacturer, [[monetization|monetizing]] the user base of the hardware, to enable such use cases as [[tivoization]] and DRM and to allow certain hardware features to be used only with vendor-supplied software, forcing users to use it despite its [[antifeature]]s, like [[Advertising|ads]], tracking and use case restriction for [[market segmentation]].
Line 122:
|
|
| <ref>{{cite web |title=ProvenCore |url=https://provenrun.com/provencore/ |publisher=ProvenRun |access-date=2024-06-23 |archive-date=2024-02-26 |archive-url=
|-
| [[Qualcomm]]
Line 143:
| GlobalPlatform
|
| <ref>{{cite web |title=Enhance Device Security With T6 |url=https://www.trustkernel.com/en/products/tee/t6.html |publisher=TrustKernel |access-date=2021-10-13 |archive-date=2021-10-29 |archive-url=https://web.archive.org/web/20211029203221/https://www.trustkernel.com/en/products/tee/t6.html |url-status=live }}</ref>
|-
| Trustonic
Line 150:
| GlobalPlatform
| Full
| <ref name=kinibi>{{cite web |title=Certificate of Security Evaluation - Kinibi 410A |url=https://globalplatform.org/wp-content/uploads/2019/12/GP-TEE-2019_03-CR-1.0_GP190005-Certificate-and-Certification-Report_20191203.pdf |publisher=GlobalPlatform |access-date=2021-10-13 |archive-date=2021-10-26 |archive-url=https://web.archive.org/web/20211026232004/https://globalplatform.org/wp-content/uploads/2019/12/GP-TEE-2019_03-CR-1.0_GP190005-Certificate-and-Certification-Report_20191203.pdf |url-status=live }}</ref>
|-
| Trustonic
Line 172:
| GlobalPlatform
| Full
| <ref>{{cite web |title=WatchTrust 2.1.1 on SC9860 |url=https://globalplatform.org/wp-content/uploads/2018/09/GP-TEE-2018_01-CR-1.0_GP170003-Certificate-Certification-Report_20180904-signed-1.pdf |publisher=GlobalPlatform |access-date=2021-10-13 |archive-date=2021-10-26 |archive-url=https://web.archive.org/web/20211026232006/https://globalplatform.org/wp-content/uploads/2018/09/GP-TEE-2018_01-CR-1.0_GP170003-Certificate-Certification-Report_20180904-signed-1.pdf |url-status=live }}</ref>
|}
Line 179:
* [[AMD]]:
** [[AMD Platform Security Processor|Platform Security Processor]] (PSP)<ref name="amd.com">{{cite web|url=https://www.amd.com/en-us/innovations/software-technologies/security|title=AMD Secure Processor (Built-in technology)|website=Amd.com|access-date=2017-09-17|archive-date=2017-09-19|archive-url=https://web.archive.org/web/20170919154841/http://www.amd.com/en-us/innovations/software-technologies/security|url-status=live}}</ref><ref>{{cite web |url=https://classic.regonline.com/custImages/360000/369552/TCC%20PPTs/TCC2013_VanDoorn.pdf |title=Secure Hardware and the Creation of an Open Trusted Ecosystem |website=Classic.regonline.com |access-date=2017-05-17 |archive-date=2017-01-15 |archive-url=https://web.archive.org/web/20170115011459/https://classic.regonline.com/custImages/360000/369552/TCC%20PPTs/TCC2013_VanDoorn.pdf |url-status=live }}</ref><ref>{{cite web |last=Chiappetta |first=Marco |url=http://hothardware.com/Reviews/AMD-Beema-and-Mullins-Mainstream-and-LowPower-2014-APUs-Tested/?page=2#!bFIw4K |title=AMD Beema and Mullins Low Power 2014 APUs Tested - Page 2 |publisher=HotHardware |date=2014-04-29 |access-date=2017-05-17 |archive-date=2017-04-07 |archive-url=https://web.archive.org/web/20170407031130/http://hothardware.com/reviews/amd-beema-and-mullins-mainstream-and-lowpower-2014-apus-tested?page=2#!bFIw4K |url-status=dead }}</ref>
** AMD Secure Encrypted Virtualization (SEV)<ref name="OpenVirtualization">{{cite web|date=April 21, 2016|title=AMD MEMORY ENCRYPTION|url=https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf|access-date=|website=developer.amd.com|archive-date=October 20, 2020|archive-url=https://web.archive.org/web/20201020150243/http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf|url-status=live}}</ref> and the Secure Nested Paging extension<ref>{{Cite web|last=|first=|date=January 2020|title=AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and More|url=https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf|url-status=live|archive-url=https://web.archive.org/web/20201105002318/https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf|archive-date=2020-11-05|access-date=|website=}}</ref>
* [[ARM architecture|ARM]]:
** [[TrustZone]]<ref>{{cite web|url=https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf|title=GlobalPlatform based Trusted Execution Environment and TrustZone Ready|website=Arm.com|access-date=2020-04-24|archive-date=2020-07-04|archive-url=https://web.archive.org/web/20200704081700/https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf|url-status=live}}</ref>
Line 192:
*** "Silent Lake" (available on Atom processors)<ref>{{cite web|url=http://wenku.baidu.com/view/cb01a885c8d376eeaeaa31a9.html|title=WW46_2014_MCG_Tablet_Roadmap_图文_百度文库|website=Wenku.baidu.com|access-date=2017-01-04|archive-date=2017-02-27|archive-url=https://web.archive.org/web/20170227010510/http://wenku.baidu.com/view/cb01a885c8d376eeaeaa31a9.html|url-status=live}}</ref><ref>{{cite web|url=https://github.com/CyanogenMod/android_device_asus_mofd-common/blob/b52bb27be47485df8646340b43a97f2dda974385/sepolicy/file.te|title=CyanogenMod/android_device_asus_mofd-common|website=GitHub|access-date=2017-01-04|archive-date=2017-03-24|archive-url=https://web.archive.org/web/20170324095520/https://github.com/CyanogenMod/android_device_asus_mofd-common/blob/b52bb27be47485df8646340b43a97f2dda974385/sepolicy/file.te|url-status=live}}</ref><ref>{{cite web|url=https://github.com/heidiao/sfp_m2_bt/blob/master/source/device/intel/cherrytrail/cht_cr_rvp/init.rc|title=heidiao/sfp_m2_bt|website=GitHub|access-date=2017-01-04|archive-date=2017-03-24|archive-url=https://web.archive.org/web/20170324095926/https://github.com/heidiao/sfp_m2_bt/blob/master/source/device/intel/cherrytrail/cht_cr_rvp/init.rc|url-status=live}}</ref>
* [[RISC-V]]:
** Keystone Customizable TEE Framework<ref>{{cite web |url= https://keystone-enclave.org/2019/07/22/Keystone-Paper.html |title= Keystone Paper and Customizable TEEs |website= keystone-enclave.org |date= 22 July 2019 |access-date= 2021-06-10 |archive-date= 2020-07-14 |archive-url= https://web.archive.org/web/20200714212312/https://keystone-enclave.org/2019/07/22/Keystone-Paper.html |url-status= live }}</ref><ref>{{cite web|url=https://www.shwetashinde.org/publications/keystone_eurosys20.pdf|title=Keystone: An Open Framework for Architecting Trusted Execution Environments|date=April 2020|access-date=16 June 2025|archive-date=31 January 2025|archive-url=https://web.archive.org/web/20250131021253/https://www.shwetashinde.org/publications/keystone_eurosys20.pdf|url-status=live}}</ref>
==See also==
|