Content deleted Content added
No edit summary |
m fix dead link |
||
(21 intermediate revisions by 17 users not shown) | |||
Line 1:
{{technical|date=January 2019}}
The '''
The Gilbert–Varshamov bound is the best known in terms of relative distance for codes over alphabets of size less than 49.{{citation needed|date=May 2013}} For larger alphabets, [[Algebraic geometry code|algebraic geometry codes]] sometimes achieve an asymptotically better rate vs. distance tradeoff than is given by the Gilbert–Varshamov bound.<ref>{{cite journal |last1=Tsfasman |first1=M.A. |last2=Vladut |first2=S.G. |last3=Zink |first3=T. |title=Modular curves, Shimura curves, and Goppa codes better than the Varshamov-Gilbert bound |journal=Mathematische Nachrichten |date=1982 |volume=104}}</ref>
==Gilbert–Varshamov bound theorem==
:'''Theorem:''' Let <math>q \geqslant 2</math>. For every <math>0 \leqslant \delta < 1 - \tfrac{1}{q}</math> and <math>0 < \varepsilon \leqslant 1 - H_q (\delta ),</math> there exists a <math>q</math>-ary linear code with rate <math>R \geqslant 1 - H_q (\delta ) - \varepsilon </math> and relative distance <math>\delta.</math>
Here <math>H_q</math> is the ''q''-ary entropy function defined as follows:
Line 15 ⟶ 12:
: <math>H_q(x) = x\log_q(q-1)-x\log_qx-(1-x)\log_q(1-x).</math>
The above result was proved by [[Edgar Gilbert]] for general
'''''High-level proof:'''''
To show the existence of the linear code that satisfies those constraints, the [[probabilistic method]] is used to construct the random linear code. Specifically, the linear code is chosen
'''''Formal proof:'''''
Line 25 ⟶ 22:
By using the probabilistic method, to show that there exists a linear code that has a Hamming distance greater than <math>d</math>, we will show that the [[probability]] that the random linear code having the distance less than <math>d</math> is exponentially small in <math>n</math>.
Recall that in a [[linear code]], the distance equals the minimum weight of
:<math>
\begin{align}
P & = \Pr_{\text{random }G} (\text{linear code generated by } G\text{ has distance} < d) \\[6pt]
& = \Pr_{\text{random }G} (\text{there exists a non-zero codeword } y \text{ in a linear code generated by }G\text{ such that } \operatorname{wt}(y) < d) \\[6pt]
&= \Pr_{\text{random }G} \left (\text{there exists } 0 \neq m \in \mathbb{F}_q^k \text{ such that } \operatorname{wt}(mG) < d \right )
\end{align}
</math>
Line 41 ⟶ 38:
By [[Boole's inequality]], we have:
: <math>P \leqslant \sum_{0 \neq m \in \mathbb{F}_q^k} \Pr_{\text{random }G} (\operatorname{wt}(mG) < d)</math>
Now for a given message <math>0 \neq m \in \mathbb{F}_q^k,</math> we want to compute
:<math>W = \Pr_{\text{random }G} (\operatorname{wt}(mG) < d).</math>
Let <math>\Delta(m_1,m_2)</math> be a Hamming distance of two messages <math>m_1</math> and <math>m_2</math>. Then for any message <math>m</math>, we have: <math>\operatorname{wt}(m) = \Delta(0,m)</math>. Therefore:
: <math>W = \sum_{\{y \in \mathbb{F}_q^n |\Delta (0,y) \leqslant d - 1\}} \Pr_{\text{random }G} (mG = y)</math>
Line 53 ⟶ 50:
Due to the randomness of <math>G</math>, <math>mG</math> is a uniformly random vector from <math>\mathbb{F}_q^n</math>. So
:<math>\Pr_{\text{random }G} (mG = y) = q^{
Let <math>\
: <math> P \leqslant q^k W = q^k \left ( \frac{\
By choosing <math>k = (1-H_q(\delta)-\varepsilon)n</math>, the above inequality becomes
Line 63 ⟶ 60:
: <math> P \leqslant q^{-\varepsilon n}</math>
Finally <math>q^{
==Comments==
# The Varshamov construction above is not explicit; that is, it does not specify the deterministic method to construct the linear code that satisfies the Gilbert–Varshamov bound.
#
#For sufficiently large non-prime q and for certain ranges of the variable δ, the Gilbert–Varshamov bound is surpassed by the [[Tsfasman–Vladut–Zink bound]].<ref>{{Cite journal|last=Stichtenoth|first=H.|date=2006|title=Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound|journal=IEEE Transactions on Information Theory|volume=52|issue=5|pages=2218–2224|doi=10.1109/TIT.2006.872986|s2cid=11982763 |issn=0018-9448}}</ref>
==See also==
==References==
{{Reflist}}
{{DEFAULTSORT:Gilbert-Varshamov bound for linear codes}}
[[Category:Coding theory]]
|