Microdifferential operator: Difference between revisions

Content deleted Content added
No edit summary
Sheddow (talk | contribs)
Typo
Tags: Mobile edit Mobile web edit
 
(20 intermediate revisions by 3 users not shown)
Line 1:
In mathematics, a '''microdifferential operator''' is a linear operator on a cotangent bundle (phase space) that generalizes a [[differential operator]] and appears in the framework of [[microlocal analysis]] as well as in the Kyoto school of [[algebraic analysis]].
 
The notion was originally introduced by L. Boutet de Monvel and P. Krée<ref>{{harvnb|L. Boutet De Monvel, Louis|P. Krée}}</ref> as well as by M. Sato, T. Kawai and M. Kashiwara.<ref>{{harvnb|M. Sato|T. Kawai|M. Kashiwara}}</ref> There is also an approach due to J. Sjöstrand.<ref>{{harvnb| Sjöstrand}}</ref>
 
== Definition ==
We first define the sheaf <math>\widehat{\mathcal{E}}</math> of formal microdifferential operators on the cotangent bundle <math>T^* X</math> of an open subset <math>X \subset \mathbb{C}^n</math>.<ref>{{harvnb|Schapira|1985|loc=Ch. I., § 1.2.}}</ref> A section of that sheaf over an open subset <math>U \subset T^* X</math> is a formal series: for some integer ''m'',
:<math>P = \sum_{-\infty < j \le m} p_j</math>
where each <math>p_j</math> is a [[holomorphic function]] on <math>U</math> that is [[homogeneous function|homogeneous]] of degree <math>j</math> in the second variable.
 
The sheaf <math>\mathcal{E}</math> of microdifferential operators on <math>T^* X</math> is then athe formalsubsheaf microdifferentialof operator<math>\widehat{\mathcal{E}}</math> thatconsisting satisfiesof those secctions satisfying the growh condition on the negative terms; namely, for each compact subset <math>K \subset U</math>, there exists an <math>\epsilon > 0</math> such that
:<math>\sum_{j \le 0} \sup_K|p_j| \epsilon^{-j}/(-j)! < \infty.</math><ref>{{harvnb|Schapira|1985|loc=Ch. I., § 1.3.}}</ref>
 
== See also ==
*[[Pseudodifferential operator]]
<!--*[[quantized contact transformation]], this article doesn't exist yet.-->
 
== Reference ==
===Notes===
{{reflist}}
===Works===
* Aoki, T., Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I, Ann. Inst. Fourier, Grenoble, 33–4 (1983), 227–250.
* Boutet De Monvel, Louis ; Krée, Paul, Pseudo-differential operators and Gevrey classes, Annales de l'Institut Fourier, Volume 17 (1967) no. 1, pp. 295-323
* M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, in: Lecture Notes in Math. 287, Springer, 1973, 265–529.
*{{cite book |last1=Schapira |first1=Pierre |title=Microdifferential Systems in the Complex Domain |series=Grundlehren der mathematischen Wissenschaften |date=1985 |volume=269 |publisher=Springer |doi=10.1007/978-3-642-61665-5 |isbn=978-3-642-64904-2 |url=https://link.springer.com/book/10.1007/978-3-642-61665-5}}
* Sjöstrand, Johannes. Singularités analytiques microlocales, dans Singularités analytiques microlocales - équation de Schrödinger et propagation des singularités..., Astérisque, no. 95 (1982), pp. iii-166. https://www.numdam.org/item/AST_1982__95__R3_0/
 
== Further reading ==
* https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1723-09.pdf in Japanese
 
[[Category:Differential operators]]