Content deleted Content added
→Rate of reconfiguration: Swapped one word: energy -> power to improve the clarity in this sentence |
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
||
(8 intermediate revisions by 7 users not shown) | |||
Line 1:
{{Use American English|date = April 2019}}▼
{{Short description|Computer architecture that can be reprogrammed}}
▲{{Use American English|date = April 2019}}
{{Technical|date=May 2009}}
'''Reconfigurable computing''' is a [[computer architecture]] combining some of the flexibility of software with the high performance of hardware by processing with
==History==
The concept of reconfigurable computing has existed since the 1960s, when [[Gerald Estrin]]'s paper proposed the concept of a computer made of a standard processor and an array of "reconfigurable" hardware.<ref name="Estrin2002">{{cite journal | last1 = Estrin | first1 = G | year = 2002 | title = Reconfigurable computer origins: the UCLA fixed-plus-variable (F+V) structure computer | journal = IEEE Ann. Hist. Comput. | volume = 24 | issue = 4| pages = 3–9 | doi = 10.1109/MAHC.2002.1114865 | s2cid = 7923912 }}</ref><ref>
Estrin, G., "Organization of Computer Systems—The Fixed Plus Variable Structure Computer",
''Proc. Western Joint Computer Conf.'', Western Joint Computer Conference, New York, 1960, pp. 33–40.</ref> The main processor would control the behavior of the reconfigurable hardware. The latter would then be tailored to perform a specific task, such as [[image processing]] or [[pattern matching]], as quickly as a dedicated piece of hardware. Once the task was done, the hardware could be adjusted to do some other task. This resulted in a hybrid computer structure combining the flexibility of software with the speed of hardware.
Line 15:
''Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines''
(FCCM '97, April 16–18, 1997), pp. 24–33.
</ref> Elixent, NGEN,<ref>{{Cite journal|last1=McCaskill|first1=John S.|last2=Chorongiewski|first2=Harald|last3=Mekelburg|first3=Karsten|last4=Tangen|first4=Uwe|last5=Gemm|first5=Udo|date=1994-09-01|title=NGEN — Configurable computer hardware to simulate long-time self-organization of biopolymers|journal=Berichte der Bunsengesellschaft für Physikalische Chemie|language=en|volume=98|issue=9|
==Theories==
Line 21:
===Tredennick's Classification===
{|class="wikitable" | align="right"
|+ ''Table 1: Nick
|-
|bgcolor="#BBBBFF" colspan="2" | '''Early Historic Computers:'''
Line 56:
| [[Flowware]] (data streams)
|}
The fundamental model of the reconfigurable computing machine paradigm, the data-stream-based [[anti machine]] is well illustrated by the differences to other machine paradigms that were introduced earlier, as shown by [[Nick Tredennick]]'s following classification scheme of computing paradigms (see "Table 1: Nick
===Hartenstein's Xputer===
Line 70:
This heterogeneous systems technique is used in computing research and especially in [[supercomputing]].<ref name="Voros2009">N. Voros, R. Nikolaos, A. Rosti, M. Hübner (editors): Dynamic System Reconfiguration in Heterogeneous Platforms - The MORPHEUS Approach; Springer Verlag, 2009</ref>
A 2008 paper reported speed-up factors of more than 4 orders of magnitude and energy saving factors by up to almost 4 orders of magnitude.<ref name="Tarek2008">{{cite journal |title= The promise of high-performance reconfigurable computing |
Some supercomputer firms offer heterogeneous processing blocks including FPGAs as accelerators.{{citation needed |date= August 2011}}
One research area is the twin-paradigm programming tool flow productivity obtained for such heterogeneous systems.<ref name="Esam2009">{{cite journal |author1= Esam El-Araby |author2= Ivan Gonzalez |author3= Tarek El-Ghazawi |title= Exploiting Partial Runtime Reconfiguration for High-Performance Reconfigurable Computing |journal= ACM Transactions on Reconfigurable Technology and Systems |volume= 1 |number= 4 |date= January 2009 |doi= 10.1145/1462586.1462590 |pages=1–23|s2cid= 10270587 }}</ref>
The US [[National Science Foundation]] has a center for high-performance reconfigurable computing (CHREC).<ref>{{cite web |title= NSF center for High-performance Reconfigurable Computing |work= official web site |url= http://www.chrec.org/ |access-date= August 19, 2011 }}</ref>
In April 2011 the fourth Many-core and Reconfigurable Supercomputing Conference was held in Europe.<ref>{{cite web |title=Many-Core and Reconfigurable Supercomputing Conference |year=2011 |work=official web site |url=http://www.mrsc2011.eu/ |archive-url=https://web.archive.org/web/20101012042408/http://www.mrsc2011.eu/
Commercial high-performance reconfigurable computing systems are beginning to emerge with the announcement of [[IBM]] integrating FPGAs with its [[IBM Power microprocessors]].<ref>
Line 97:
Partial reconfiguration is not supported on all FPGAs. A special software flow with emphasis on modular design is required. Typically the design modules are built along well defined boundaries inside the FPGA that require the design to be specially mapped to the internal hardware.
From the functionality of the design, partial reconfiguration can be divided into two groups:<ref>{{Cite book | last1 = Wiśniewski | first1 = Remigiusz | title = Synthesis of compositional microprogram control units for programmable devices | year = 2009 | publisher = University of Zielona Góra | ___location = Zielona Góra | isbn = 978-83-7481-293-1 |
* ''dynamic partial reconfiguration'', also known as an active partial reconfiguration - permits to change the part of the device while the rest of an FPGA is still running;
* ''static partial reconfiguration'' - the device is not active during the reconfiguration process. While the partial data is sent into the FPGA, the rest of the device is stopped (in the shutdown mode) and brought up after the configuration is completed.
Line 104:
===Computer emulation ===
[[File:FPGARetrocomputing.jpg|An FPGA board is being used to recreate the Vector-06C computer.|thumb]]
With the advent of affordable FPGA boards, students' and hobbyists' projects seek to recreate [[vintage
}}</ref><ref name="risc">{{cite web|url=http://www.inf.ethz.ch/personal/wirth/Articles/Miscellaneous/RISC.pdf |title=The Design of a RISC Architecture and its Implementation with an FPGA |author=Niklaus Wirth |access-date=6 Sep 2012 }}{{dead link|date=June 2016|bot=medic}}{{cbignore|bot=medic}}</ref><ref name="soc">{{cite web|author=Jan Gray
|url=http://www.fpgacpu.org/papers/soc-gr0040-paper.pdf|title=Designing a Simple FPGA-Optimized RISC CPU and System-on-a-Chip|access-date=6 Sep 2012
Line 115:
=== Mitrionics ===
[[Mitrionics]] has developed a SDK that enables software written using a [[single assignment]] language to be compiled and executed on FPGA-based computers. The Mitrion-C software language and Mitrion processor enable software developers to write and execute applications on FPGA-based computers in the same manner as with other computing technologies, such as graphical processing units (
=== National Instruments ===
Line 125:
=== Intel ===
[[Intel]]<ref name="intel_altera">{{cite web |url=https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/ |title=Intel completes acquisition of Altera |work=Intel Newsroom |access-date=15 November 2016}}</ref> supports partial reconfiguration of their FPGA devices on 28 nm devices such as Stratix V,<ref name="stratixv_pr">{{cite web |url=https://www.altera.com/products/fpga/features/stxv-part-reconfig.html |title=Stratix V FPGAs: Ultimate Flexibility Through Partial and Dynamic Reconfiguration |access-date=15 November 2016}}</ref> and on the 20 nm Arria 10 devices.<ref name="arria10_pr">{{cite web |url=https://www.altera.com/products/design-software/fpga-design/quartus-prime/features.html |title=Intel Quartus Prime Software Productivity Tools and Features |access-date=15 November 2016}}</ref> The Intel FPGA partial reconfiguration flow for Arria 10 is based on the hierarchical design methodology in the Quartus Prime Pro software where users create physical partitions of the FPGA that can be reconfigured<ref name="arria10_pr_docs">{{cite web |url=https://www.altera.com/en_US/pdfs/literature/hb/qts/qts-qps-5v1.pdf |title=Quartus Prime Standard Edition Handbook Volume 1: Design and Synthesis |publisher=Intel |access-date=15 November 2016 |pages=4–1}}</ref> at runtime while the remainder of the design continues to operate. The Quartus Prime Pro software also support hierarchical partial reconfiguration and simulation of partial reconfiguration.
== Classification of systems ==
Line 181:
* T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk and P.Y.K. Cheung, "Reconfigurable Computing: Architectures and Design Methods", IEEE Proceedings: Computer & Digital Techniques, Vol. 152, No. 2, March 2005, pp. 193–208.
* A. Zomaya (editor): Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies; Springer Verlag, 2006
* J. M. Arnold and D. A. Buell, "VHDL programming on Splash 2," in More FPGAs, Will Moore and Wayne Luk, editors, Abingdon EE & CS Books, Oxford, England, 1994, pp. 182–191. (Proceedings, International Workshop on Field-Programmable Logic, Oxford, 1993.)
* J. M. Arnold, D. A. Buell, D. Hoang, D. V. Pryor, N. Shirazi, M. R. Thistle, "Splash 2 and its applications, "Proceedings, International Conference on Computer Design, Cambridge, 1993, pp. 482–486.
* D. A. Buell and Kenneth L. Pocek, "Custom computing machines: An introduction," [[The Journal of Supercomputing]], v. 9, 1995, pp. 219–230.
Line 204:
* [https://web.archive.org/web/20160306094104/http://vlsi-world.com/content/view/48/47 Introduction to Dynamic Partial Reconfiguration]
* [http://www12.informatik.uni-erlangen.de/research/recobus/ ReCoBus-Builder project for easily implementing complex reconfigurable systems]
* [http://www.dresd.org/ DRESD (Dynamic Reconfigurability in Embedded System Design) research project] {{Webarchive|url=https://web.archive.org/web/20080715053642/http://www.dresd.org/ |date=2008-07-15 }}
{{Programmable Logic}}
|