Content deleted Content added
Stevebroshar (talk | contribs) Firmware _is_ software (no need to list firmware separately); "specific ... implementation" is wordy (component is more concise) |
Citation bot (talk | contribs) Added bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:All articles needing examples | #UCB_Category 691/867 |
||
(16 intermediate revisions by 8 users not shown) | |||
Line 2:
{{Use mdy dates|date=January 2024}}
A '''video coding format'''{{efn|The term ''video coding'' includes [[Advanced Video Coding]], [[High Efficiency Video Coding]], and [[Video Coding Experts Group]].<ref>{{cite web|url=http://654lab.webstarts.com/uploads/csvt_overview.pdf|title=Overview of the H.264 / AVC Video Coding Standard|publisher=IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY|date=July 2003|author1=Thomas Wiegand | author1-link=Thomas Wiegand |author2=Gary J. Sullivan |author3=Gisle Bjontegaard |author4=Ajay Luthra |name-list-style=amp }}</ref>}} (or sometimes '''video compression format''') is
Some video coding formats are documented by a detailed [[technical specification]] document known as a '''video coding specification'''. Some such specifications are written and approved by [[standardization organization]]s as [[technical standard]]s, and are thus known as a '''video coding standard'''. There are [[de facto standard|''de facto'' standards]] and formal standards.
Line 21:
==History==
The concept of [[analog video]] compression dates back to 1929, when R.D. Kell in [[United Kingdom|Britain]] proposed the concept of transmitting only the portions of the scene that changed from frame-to-frame. The concept of [[digital video]] compression dates back to 1952, when [[Bell Labs]] researchers B.M. Oliver and
The earliest digital video coding algorithms were either for [[uncompressed video]] or used [[lossless compression]], both methods inefficient and impractical for digital video coding.<ref name="Ghanbari">{{cite book |last1=Ghanbari |first1=Mohammed |title=Standard Codecs: Image Compression to Advanced Video Coding |date=2003 |publisher=[[Institution of Engineering and Technology]] |isbn=9780852967102 |pages=1–2 |url=https://books.google.com/books?id=7XuU8T3ooOAC&pg=PA1}}</ref><ref name="Lea">{{cite book |last1=Lea |first1=William |title=Video on demand: Research Paper 94/68 |date=1994 |publisher=[[House of Commons Library]] |url=https://researchbriefings.parliament.uk/ResearchBriefing/Summary/RP94-68 |access-date=September 20, 2019}}</ref> Digital video was introduced in the 1970s,<ref name="Ghanbari"/> initially using uncompressed [[pulse-code modulation]] (PCM), requiring high [[bitrate]]s around 45{{ndash}}200 [[Mbit/s]] for [[standard-definition]] (SD) video,<ref name="Ghanbari"/><ref name="Lea"/> which was up to 2,000 times greater than the [[telecommunication]] [[Bandwidth (computing)|bandwidth]] (up to 100{{nbsp}}[[kbit/s]]) available until the 1990s.<ref name="Lea"/> Similarly, uncompressed [[high-definition video|high-definition]] (HD) [[1080p]] video requires bitrates exceeding 1{{nbsp}}[[Gbit/s]], significantly greater than the bandwidth available in the 2000s.<ref>{{cite book |last1=Lee |first1=Jack |title=Scalable Continuous Media Streaming Systems: Architecture, Design, Analysis and Implementation |date=2005 |publisher=[[John Wiley & Sons]] |isbn=9780470857649 |page=25 |url=https://books.google.com/books?id=7fuvu52cyNEC&pg=PA25}}</ref>
Line 28:
Practical [[video compression]] emerged with the development of [[motion compensation|motion-compensated]] [[Discrete cosine transform|DCT]] (MC DCT) coding,<ref name="Lea"/><ref name="Ghanbari"/> also called block motion compensation (BMC)<ref name="ITU"/> or DCT motion compensation. This is a hybrid coding algorithm,<ref name="ITU"/> which combines two key [[data compression]] techniques: [[discrete cosine transform]] (DCT) coding<ref name="Lea"/><ref name="Ghanbari"/> in the [[spatial dimension]], and predictive [[motion compensation]] in the [[temporal dimension]].<ref name="ITU"/>
DCT coding is a [[lossy]] block compression [[transform coding]] technique that was first proposed by [[Nasir Ahmed (engineer)|Nasir Ahmed]], who initially intended it for [[image compression]], while he was working at [[Kansas State University]] in 1972. It was then developed into a practical image compression algorithm by Ahmed with T. Natarajan and [[K. R. Rao]] at the [[University of Texas]] in 1973, and was published in 1974.<ref name="Ahmed">{{cite journal |last=Ahmed |first=Nasir |author-link=N. Ahmed |title=How I Came Up With the Discrete Cosine Transform |journal=[[Digital Signal Processing (journal)|Digital Signal Processing]] |date=January 1991 |volume=1 |issue=1 |pages=4–5 |doi=10.1016/1051-2004(91)90086-Z |bibcode=1991DSP.....1....4A |url=https://www.scribd.com/doc/52879771/DCT-History-How-I-Came-Up-with-the-Discrete-Cosine-Transform|url-access=subscription }}</ref><ref name="pubDCT">{{Citation |first1=Nasir |last1=Ahmed |author1-link=N. Ahmed |first2=T. |last2=Natarajan |first3=K. R. |last3=Rao |title=Discrete Cosine Transform |journal=IEEE Transactions on Computers |date=January 1974 |volume=C-23 |issue=1 |pages=90–93 |doi=10.1109/T-C.1974.223784
The other key development was motion-compensated hybrid coding.<ref name="ITU"/> In 1974, Ali Habibi at the [[University of Southern California]] introduced hybrid coding,<ref name="Habibi">{{cite journal |last1=Habibi |first1=Ali |title=Hybrid Coding of Pictorial Data |journal=IEEE Transactions on Communications |date=1974 |volume=22 |issue=5 |pages=614–624 |doi=10.1109/TCOM.1974.1092258}}</ref><ref>{{cite journal |last1=Chen |first1=Z. |last2=He |first2=T. |last3=Jin |first3=X. |last4=Wu |first4=F. |title=Learning for Video Compression |journal=IEEE Transactions on Circuits and Systems for Video Technology |date=2019 |volume=30 |issue=2 |pages=566–576 |doi=10.1109/TCSVT.2019.2892608 |arxiv=1804.09869
The DCT was applied to video encoding by Wen-Hsiung Chen,<ref name="Stankovic">{{cite journal |last1=Stanković |first1=Radomir S. |last2=Astola |first2=Jaakko T. |title=Reminiscences of the Early Work in DCT: Interview with K.R. Rao |journal=Reprints from the Early Days of Information Sciences |date=2012 |volume=60 |url=http://ticsp.cs.tut.fi/reports/ticsp-report-60-reprint-rao-corrected.pdf |access-date=October 13, 2019}}</ref> who developed a fast DCT algorithm with C.H. Smith and S.C. Fralick in 1977,<ref>{{cite journal |last1=Chen |first1=Wen-Hsiung |last2=Smith |first2=C. H. |last3=Fralick |first3=S. C. |title=A Fast Computational Algorithm for the Discrete Cosine Transform |journal=[[IEEE Transactions on Communications]] |date=September 1977 |volume=25 |issue=9 |pages=1004–1009 |doi=10.1109/TCOM.1977.1093941}}</ref><ref name="t81">{{cite web |title=T.81 – Digital compression and coding of continuous-tone still images – Requirements and guidelines |url=https://www.w3.org/Graphics/JPEG/itu-t81.pdf |publisher=[[CCITT]] |date=September 1992 |access-date=July 12, 2019}}</ref> and founded [[Compression Labs, Inc.|Compression Labs]] to commercialize DCT technology.<ref name="Stankovic"/> In 1979, [[Anil K. Jain (electrical engineer, born 1946)|Anil K. Jain]] and Jaswant R. Jain further developed motion-compensated DCT video compression.<ref>{{cite book |last1=Cianci |first1=Philip J. |title=High Definition Television: The Creation, Development and Implementation of HDTV Technology |date=2014 |publisher=McFarland |isbn=9780786487974 |page=63 |url=https://books.google.com/books?id=0mbsfr38GTgC&pg=PA63}}</ref><ref name="ITU"/> This led to Chen developing a practical video compression algorithm, called motion-compensated DCT or adaptive scene coding, in 1981.<ref name="ITU"/> Motion-compensated DCT later became the standard coding technique for video compression from the late 1980s onwards.<ref name="Ghanbari"/><ref name="Li">{{cite book |last1=Li |first1=Jian Ping |title=Proceedings of the International Computer Conference 2006 on Wavelet Active Media Technology and Information Processing: Chongqing, China, 29-31 August 2006 |date=2006 |publisher=[[World Scientific]] |isbn=9789812709998 |page=847 |url=https://books.google.com/books?id=FZiK3zXdK7sC&pg=PA847}}</ref>
Line 37:
The first digital video coding standard was [[H.120]], developed by the [[CCITT]] (now ITU-T) in 1984.<ref name="history">{{cite web |title=The History of Video File Formats Infographic |url=http://www.real.com/resources/digital-video-file-formats/ |website=[[RealNetworks]] |access-date=August 5, 2019 |date=April 22, 2012}}</ref> H.120 was not usable in practice, as its performance was too poor.<ref name="history" /> H.120 used motion-compensated DPCM coding,<ref name="ITU"/> a lossless compression algorithm that was inefficient for video coding.<ref name="Ghanbari"/> During the late 1980s, a number of companies began experimenting with [[discrete cosine transform]] (DCT) coding, a much more efficient form of compression for video coding. The CCITT received 14 proposals for DCT-based video compression formats, in contrast to a single proposal based on [[vector quantization]] (VQ) compression. The [[H.261]] standard was developed based on motion-compensated DCT compression.<ref name="Ghanbari"/><ref name="Li"/> H.261 was the first practical video coding standard,<ref name="history" /> and uses [[patents]] licensed from a number of companies, including [[Hitachi]], [[PictureTel]], [[Nippon Telegraph and Telephone|NTT]], [[BT Group|BT]], and [[Toshiba]], among others.<ref name="h261-patents"/> Since H.261, motion-compensated DCT compression has been adopted by all the major video coding standards (including the [[H.26x]] and [[MPEG]] formats) that followed.<ref name="Ghanbari"/><ref name="Li"/>
[[MPEG-1]], developed by the [[Moving Picture Experts Group]] (MPEG), followed in 1991, and it was designed to compress [[VHS]]-quality video.<ref name="history"/> It was succeeded in 1994 by [[MPEG-2]]/[[H.262]],<ref name="history"/> which was developed with patents licensed from a number of companies, primarily [[Sony]], [[Technicolor SA|Thomson]] and [[Mitsubishi Electric]].<ref name="mp2-patents"/> MPEG-2 became the standard video format for [[DVD]] and [[SD digital television]].<ref name="history"/> Its motion-compensated DCT algorithm was able to achieve a [[compression ratio]] of up to 100:1, enabling the development of [[digital media]] technologies such as [[video on demand]] (VOD)<ref name="Lea"/> and [[high-definition television]] (HDTV).<ref name="Shishikui">{{cite
The most widely used video coding format {{as of|2019|lc=y}} is [[H.264/MPEG-4 AVC]].<ref name="Bitmovin">{{cite web |url=https://cdn2.hubspot.net/hubfs/3411032/Bitmovin%20Magazine/Video%20Developer%20Report%202019/bitmovin-video-developer-report-2019.pdf |title=Video Developer Report 2019 |website=[[Bitmovin]] |year=2019 |access-date=November 5, 2019}}</ref> It was developed in 2003, and uses patents licensed from a number of organizations, primarily Panasonic, [[Godo kaisha|Godo Kaisha IP Bridge]] and [[LG Electronics]].<ref name="avc-patents"/> In contrast to the standard DCT used by its predecessors, AVC uses the [[Discrete cosine transform|integer DCT]].<ref name="Stankovic"/><ref name="Wang">{{cite journal |last1=Wang |first1=Hanli |last2=Kwong |first2=S. |last3=Kok |first3=C. |title=Efficient prediction algorithm of integer DCT coefficients for H.264/AVC optimization |journal=IEEE Transactions on Circuits and Systems for Video Technology |date=2006 |volume=16 |issue=4 |pages=547–552 |doi=10.1109/TCSVT.2006.871390 |
A main problem for many video coding formats has been [[patent]]s, making it expensive to use or potentially risking a patent lawsuit due to [[submarine patent]]s. The motivation behind many recently designed video coding formats such as [[Theora]], [[VP8]], and [[VP9]] have been to create a ([[Free software|libre]]) video coding standard covered only by royalty-free patents.<ref>{{Cite web|url=https://blogs.cisco.com/collaboration/world-meet-thor-a-project-to-hammer-out-a-royalty-free-video-codec|title = World, Meet Thor – a Project to Hammer Out a Royalty Free Video Codec|date = August 11, 2015}}</ref> Patent status has also been a major point of contention for the choice of which video formats the mainstream [[web browser]]s will support inside the [[HTML video]] tag.
The current-generation video coding format is [[HEVC]] (H.265), introduced in 2013. AVC uses the integer DCT with 4x4 and 8x8 block sizes, and HEVC uses integer DCT and [[Discrete sine transform|DST]] transforms with varied block sizes between 4x4 and 32x32.<ref name="apple">{{cite web |last1=Thomson |first1=Gavin |last2=Shah |first2=Athar |title=Introducing HEIF and HEVC |url=https://devstreaming-cdn.apple.com/videos/wwdc/2017/503i6plfvfi7o3222/503/503_introducing_heif_and_hevc.pdf |publisher=[[Apple Inc.]] |year=2017 |access-date=August 5, 2019}}</ref> HEVC is heavily patented, mostly by [[Samsung Electronics]], [[GE]], [[Nippon Telegraph and Telephone|NTT]], and [[JVCKenwood]].<ref name="hevc-patents"/> It is challenged by the [[AV1]] format, intended for free license. {{As of|2019}}, AVC is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video developers, followed by HEVC, which is used by 43% of developers.<ref name="Bitmovin"/>
==List of video coding standards==
Line 93:
| 1995|| ISO, IEC, [[ITU-T]]
| MPEG, VCEG
| [[Sony]], [[Technicolor SA|Thomson]], [[Mitsubishi Electric|Mitsubishi]], [[H.262/MPEG-2 Part 2#Patent holders|etc.]]<ref name="mp2-patents">{{cite web |title=MPEG-2 Patent List |url=https://www.mpegla.com/wp-content/uploads/m2-att1.pdf |website=[[MPEG LA]] |access-date=July 7, 2019 |archive-date=May 29, 2019 |archive-url=https://web.archive.org/web/20190529164140/https://www.mpegla.com/wp-content/uploads/m2-att1.pdf |url-status=dead }}</ref>
| 29%
| [[DVD|DVD Video]], [[Blu-ray]], [[DVB]], [[ATSC]], [[SVCD]], [[SDTV]]
Line 108:
| 1996|| ITU-T
| VCEG
| Mitsubishi, [[Hitachi]], Panasonic, [[MPEG-4 Part 2#Patent holders|etc.]]<ref name="mp4-patents">{{cite web |title=MPEG-4 Visual - Patent List |url=https://www.mpegla.com/wp-content/uploads/m4v-att1.pdf |website=[[MPEG LA]] |access-date=July 6, 2019 |archive-date=July 6, 2019 |archive-url=https://web.archive.org/web/20190706184814/https://www.mpegla.com/wp-content/uploads/m4v-att1.pdf |url-status=dead }}</ref>
| {{unk}}
| Videoconferencing, videotelephony, [[H.320]], [[ISDN]],<ref>{{cite news |last1=Davis |first1=Andrew |title=The H.320 Recommendation Overview |url=https://www.eetimes.com/document.asp?doc_id=1275886 |access-date=November 7, 2019 |work=[[EE Times]] |date=June 13, 1997}}</ref><ref>{{cite book |doi=10.1109/WESCAN.1997.627108 |chapter=H.263 based facial image compression for low bitrate communications |title=IEEE WESCANEX 97
|- style="text-align:center;"
| [[MPEG-4 Part 2]] (MPEG-4 Visual)
Line 129:
| 2003|| ISO, IEC, ITU-T
| MPEG, VCEG
| Panasonic, [[Godo kaisha|Godo Kaisha IP Bridge]], [[LG Electronics|LG]], [[H.264/MPEG-4 AVC#Patent holders|etc.]]<ref name="avc-patents">{{cite web |title=AVC/H.264 {{ndash}} Patent List |url=https://www.mpegla.com/wp-content/uploads/avc-att1.pdf |website=MPEG LA |access-date=July 6, 2019 |archive-date=January 25, 2023 |archive-url=https://web.archive.org/web/20230125102953/https://www.mpegla.com/wp-content/uploads/avc-att1.pdf |url-status=dead }}</ref>
| 91%
| [[Blu-ray]], [[HD DVD]], [[HDTV]] ([[DVB]], [[ATSC]]), [[video streaming]] ([[YouTube]], [[Netflix]], [[Vimeo]]), [[iTunes Store]], [[iPod Video]], [[Apple TV]], videoconferencing, [[Flash Player]], [[Silverlight]], [[VOD]]
Line 145:
| [[SMPTE]]
| [[SMPTE]]
| [[Microsoft]], Panasonic, LG, [[Samsung Electronics|Samsung]], [[VC-1#Patent holders|etc.]]<ref>{{cite web |title=VC-1 Patent List |url=https://www.mpegla.com/wp-content/uploads/vc-1-att1.pdf |website=[[MPEG LA]] |access-date=July 11, 2019 |archive-date=July 6, 2019 |archive-url=https://web.archive.org/web/20190706203225/https://www.mpegla.com/wp-content/uploads/hevc-att1.pdf |url-status=dead }}</ref>
| {{unk}}
| Blu-ray, Internet video
Line 161:
| ISO, IEC, ITU-T
| MPEG, VCEG
| Samsung, [[GE]], [[Nippon Telegraph and Telephone|NTT]], [[JVCKenwood]], [[High Efficiency Video Coding#Patent holders|etc.]]<ref name="hevc-patents">{{cite web |title=HEVC Patent List |url=https://www.mpegla.com/wp-content/uploads/hevc-att1.pdf |website=[[MPEG LA]] |access-date=July 6, 2019 |archive-date=April 10, 2021 |archive-url=https://web.archive.org/web/20210410171930/https://www.mpegla.com/wp-content/uploads/hevc-att1.pdf |url-status=dead }}</ref><ref name="hevcadvance">{{cite web|url=https://www.hevcadvance.com/licensors/|title=HEVC Advance Patent List|website=[[HEVC Advance]]|access-date=July 6, 2019|archive-date=August 24, 2020|archive-url=https://web.archive.org/web/20200824174620/https://www.hevcadvance.com/licensors/|url-status=dead}}</ref>
| 43%
|[[UHD Blu-ray]], DVB, [[ATSC 3.0]], [[Ultra-high-definition television|UHD]] streaming, [[HEIF]], [[macOS High Sierra]], [[iOS 11]]
Line 183:
==Lossless, lossy, and uncompressed==
Consumer video is generally compressed using [[lossy]] [[video codec]]s, since that results in significantly smaller files than [[lossless]] compression. Some video coding formats are designed explicitly for either lossy or lossless compression, and some video coding formats such as [[Dirac (video compression format)|Dirac]] and [[H.264]] support both.<ref>{{Cite journal|title=RFC 8761 - Video Codec Requirements and Evaluation Methodology|url=https://datatracker.ietf.org/doc/html/rfc8761|access-date=February 10, 2022|website=datatracker.ietf.org|date=April 2020 |language=en |last1=Filippov |first1=Alexey |last2=Norkin |first2=Aney |last3=Alvarez |first3=José Roberto }}</ref>
[[Uncompressed video]] formats, such as ''Clean HDMI'', is a form of lossless video used in some circumstances, such as when sending video to a display over
==Intra-frame==
Interframe compression complicates editing of an encoded video sequence.<ref name="Bhojani">{{cite web|last=Bhojani|first=D.R.|title=4.1 Video Compression|url=http://shodh.inflibnet.ac.in/bitstream/123456789/821/5/05_hypothesis.pdf|work=Hypothesis|access-date=March 6, 2013|archive-date=May 10, 2013|archive-url=https://web.archive.org/web/20130510133020/http://shodh.inflibnet.ac.in/bitstream/123456789/821/5/05_hypothesis.pdf|url-status=dead}}</ref>
One subclass of relatively simple video coding formats are the [[intra-frame]] video formats, such as [[DV (video format)|DV]], in which each frame of the video stream is compressed independently without referring to other frames in the stream, and no attempt is made to take advantage of correlations between successive pictures over time for better compression. One example is [[Motion JPEG]], which is simply a sequence of individually [[JPEG]]-compressed images. This approach is quick and simple, at the expense of the encoded video being much larger than a video coding format supporting [[Inter frame]] coding.
Line 196:
==Profiles and levels==
A video coding format can define optional restrictions to encoded video, called [[profile (engineering)|profile]]s and levels. It is possible to have a decoder
A ''profile'' restricts which encoding techniques are allowed. For example, the H.264 format includes the profiles ''baseline'', ''main'' and ''high'' (and others). While [[Video compression picture types|P-slices]] (which can be predicted based on preceding slices) are supported in all profiles, [[Video compression picture types|B-slices]] (which can be predicted based on both preceding and following slices) are supported in the ''main'' and ''high'' profiles but not in ''baseline''.<ref name="adobe"/>
|