Content deleted Content added
GoingBatty (talk | contribs) m clean up, typo(s) fixed: Therefore → Therefore, (2) |
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
||
(16 intermediate revisions by 13 users not shown) | |||
Line 1:
{{Short description|A technology to correct measurements in industrial processes}}
'''Industrial process data validation and reconciliation''', or more briefly, '''process data
==Models, data and measurement errors==
Line 12 ⟶ 13:
File:Normal_with_bias.jpg|Normally distributed measurements with bias.
</gallery>
Data originates typically from [[measurements]] taken at different places throughout the industrial site, for example temperature, pressure, volumetric flow rate measurements etc. To understand the basic principles of
# [[random error]]s due to intrinsic [[sensor]] [[accuracy]] and
# [[systematic errors]] (or gross errors) due to sensor [[calibration]] or faulty data transmission.
Line 31 ⟶ 32:
==History==
,<ref name="Stanley-Mah-1977">G.M. Stanley and R.S.H. Mah, [http://gregstanleyandassociates.com/AIChEJ-1977-EstimationInProcessNetworks.pdf ''Estimation of Flows and Temperatures in Process Networks'', AIChE Journal 23: 642–650, 1977.]</ref><ref>P. Joris, B. Kalitventzeff, ''Process measurements analysis and validation'', Proc. CEF’87: Use Comput. Chem. Eng., Italy, 41–46, 1987.</ref> Quasi steady state dynamics for filtering and simultaneous parameter estimation over time were introduced in 1977 by Stanley and Mah.<ref name="Stanley-Mah-1977"/> Dynamic
▲<ref>P. Joris, B. Kalitventzeff, ''Process measurements analysis and validation'', Proc. CEF’87: Use Comput. Chem. Eng., Italy, 41–46, 1987.</ref> Quasi steady state dynamics for filtering and simultaneous parameter estimation over time were introduced in 1977 by Stanley and Mah.<ref name="Stanley-Mah-1977"/> Dynamic DVR was formulated as a nonlinear optimization problem by Liebman et al. in 1992.<ref>M.J. Liebman, T.F. Edgar, L.S. Lasdon, ''Efficient Data Reconciliation and Estimation for Dynamic Processes Using Nonlinear Programming Techniques'', Computers Chem. Eng. 16: 963–986, 1992.</ref>
==Data reconciliation==
Line 55:
The term <math>\left(\frac{y_i^*-y_i}{\sigma_i}\right)^2\,\!</math> is called the ''penalty'' of measurement ''i''. The objective function is the sum of the penalties, which will be denoted in the following by <math>f(y^*)=\sum_{i=1}^n\left(\frac{y_i^*-y_i}{\sigma_i}\right)^2</math>.
In other words, one wants to minimize the overall correction (measured in the least squares term) that is needed in order to satisfy the [[constraint (mathematics)|system constraints]]. Additionally, each least squares term is weighted by the [[standard deviation]] of the corresponding measurement. The standard deviation is related to the accuracy of the measurement. For example, at a 95% confidence level, the standard deviation is about half the accuracy.
===Redundancy===
Line 66:
Redundancy can be due to [[redundancy (engineering)|sensor redundancy]], where sensors are duplicated in order to have more than one measurement of the same quantity. Redundancy also arises when a single variable can be estimated in several independent ways from separate sets of measurements at a given time or time averaging period, using the algebraic constraints.
Redundancy is linked to
[
Topological redundancy is intimately linked with the [[degrees of freedom (physics and chemistry)|degrees of freedom]] (<math>dof\,\!</math>) of a mathematical system,<ref name="vdi">VDI-Gesellschaft Energie und Umwelt, "Guidelines - VDI 2048 Blatt 1 -
When speaking about topological redundancy we have to distinguish between measured and unmeasured variables. In the following let us denote by <math>x\,\!</math> the unmeasured variables and <math>y\,\!</math> the measured variables. Then the system of the process constraints becomes <math>F(x,y)=0\,\!</math>, which is a nonlinear system in <math>y\,\!</math> and <math>x\,\!</math>.
Line 90:
We incorporate only flow conservation constraints and obtain <math>a+b=c\,\!</math> and <math>c=d\,\!</math>. It is possible that the system <math>F(x,y)=0\,\!</math> is not calculable, even though <math>p-m\ge 0\,\!</math>.
If we have measurements for <math>c\,\!</math> and <math>d\,\!</math>, but not for <math>a\,\!</math> and <math>b\,\!</math>, then the system cannot be calculated (knowing <math>c\,\!</math> does not give information about <math>a\,\!</math> and <math>b\,\!</math>). On the other hand, if <math>a\,\!</math> and <math>
In 1981, observability and redundancy criteria were proven for these sorts of flow networks involving only mass and energy balance constraints.<ref name="Stanley-Mah-1981b">[
===Benefits===
Line 115:
The individual test compares each penalty term in the objective function with the critical values of the normal distribution. If the <math>i</math>-th penalty term is outside the 95% confidence interval of the normal distribution, then there is reason to believe that this measurement has a gross error.
==Advanced process data
Advanced process data
* complex models incorporating besides mass balances also thermodynamics, momentum balances, equilibria constraints, hydrodynamics etc.
* gross error remediation techniques to ensure meaningfulness of the reconciled values,
Line 136:
===Workflow===
Advanced
# data acquisition from data historian, data base or manual inputs
# data validation and filtering of raw measurements
Line 144:
#* gross error remediation (and go back to step 3)
# result storage (raw measurements together with reconciled values)
The result of an advanced
==Applications==
As
==See also==
Line 164:
* Rankin, J. & Wasik, L. "Dynamic Data Reconciliation of Batch Pulping Processes (for On-Line Prediction)" PAPTAC Spring Conference 2009.
* S. Narasimhan, C. Jordache, ''Data reconciliation and gross error detection: an intelligent use of process data'', Golf Publishing Company, Houston, 2000.
* V. Veverka, F. Madron, ''Material and Energy Balancing in the Process Industries'', Elsevier Science BV, Amsterdam, 1997.
* J. Romagnoli, M.C. Sanchez, ''Data processing and reconciliation for chemical process operations'', Academic Press, 2000.
|