Content deleted Content added
m →External links: corrected surname |
|||
(48 intermediate revisions by 13 users not shown) | |||
Line 11:
The lemniscate functions have periods related to a number {{math|<math>\varpi =</math> 2.622057...}} called the [[lemniscate constant]], the ratio of a lemniscate's perimeter to its diameter. This number is a [[Quartic plane curve|quartic]] analog of the ([[Conic section|quadratic]]) {{math|<math>\pi =</math> 3.141592...}}, [[pi|ratio of perimeter to diameter of a circle]].
As [[complex analysis|complex functions]], {{math|sl}} and {{math|cl}} have a [[square lattice|square]] [[period lattice]] (a multiple of the [[Gaussian integer]]s) with [[Fundamental pair of periods|fundamental periods]] <math>\{(1 + i)\varpi, (1 - i)\varpi\},</math><ref>The fundamental periods <math>(1+i)\varpi</math> and <math>(1-i)\varpi</math> are "minimal" in the sense that they have the smallest absolute value of all periods whose real part is non-negative.</ref> and are a special case of two [[Jacobi elliptic functions]] on that lattice, <math>\operatorname{sl} z = \operatorname{sn}(z;
Similarly, the '''hyperbolic lemniscate sine''' {{math|slh}} and '''hyperbolic lemniscate cosine''' {{math|clh}} have a square period lattice with fundamental periods <math>\bigl\{\sqrt2\varpi, \sqrt2\varpi i\bigr\}.</math>
Line 26:
:<math> z = \int_0^{\operatorname{sl} z}\frac{\mathrm{d}t}{\sqrt{1-t^4}} = \int_{\operatorname{cl} z}^1\frac{\mathrm{d}t}{\sqrt{1-t^4}}.</math>
Beyond that square, the functions can be
By comparison, the circular sine and cosine can be defined as the solution to the initial value problem:
Line 39:
[[File:Lemniscate constant as an integral.png|thumb|upright=1.3|The lemniscate sine function and hyperbolic lemniscate sine functions are defined as inverses of elliptic integrals. The complete integrals are related to the lemniscate constant {{mvar|ϖ}}.]]
The lemniscate functions have minimal real period {{
:<math>\varpi = 2\int_0^1\frac{\mathrm{d}t}{\sqrt{1-t^4}} = 2.62205\ldots</math>
Line 45:
The lemniscate functions satisfy the basic relation <math>\operatorname{cl}z = {\operatorname{sl}}\bigl(\tfrac12\varpi - z\bigr),</math> analogous to the relation <math>\cos z = {\sin}\bigl(\tfrac12\pi - z\bigr).</math>
The lemniscate constant {{
<math display="block">
Line 51:
</math>
An analogous formula for {{
<math display="block">
Line 57:
</math>
The [[Machin-like formula|Machin formula]] for {{
The lemniscate and circle constants were found by Gauss to be related to each-other by the [[arithmetic-geometric mean]] {{
<math display="block">
Line 91:
\end{aligned}</math>
As a result, both functions are invariant under translation by an [[Gaussian integer#Examples|even-Gaussian-integer]] multiple of <math>\varpi</math>.<ref>The even Gaussian integers are the residue class of {{tmath|0}}, modulo {{
:<math>\begin{aligned}
Line 109:
\end{aligned}</math>
The {{math|sl}} function has simple [[zeros and poles|zeros]] at Gaussian integer multiples of {{
Also
Line 235:
:<math>
\operatorname{cl}^2 \tfrac12x = \frac{1+\operatorname{cl}x \sqrt{1+\operatorname{sl}^2x}}{1 + \sqrt{1+\operatorname{sl}^2x}
</math>
:<math>
\operatorname{sl}^2 \tfrac12x = \frac{1-\operatorname{cl}x\sqrt{1+\operatorname{sl}^2x}}{1 + \sqrt{1+\operatorname{sl}^2x}
</math>
Line 294:
===Specific values===
Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into {{
{| class="wikitable"
Line 387:
[[File:Lemniscate 15-gon.png|thumb|right|upright=1.5|A lemniscate divided into 15 sections of equal arclength (red curves). Because the prime factors of 15 (3 and 5) are both Fermat primes, this polygon (in black) is constructible using a straightedge and compass.]]
Later mathematicians generalized this result. Analogously to the [[constructible polygon]]s in the circle, the lemniscate can be divided into {{
Let <math>r_j=\operatorname{sl}\dfrac{2j\varpi}{n}</math>. Then the {{
:<math>\left(r_j\sqrt{\tfrac12\bigl(1+r_j^2\bigr)},\ (-1)^{\left\lfloor 4j/n\right\rfloor} \sqrt{\tfrac12r_j^2\bigl(1-r_j^2\bigr)}\right),\quad j\in\{1,2,\ldots ,n\}</math>
Line 397:
=== Arc length of rectangular elastica ===
[[File:Rectangular elastica and lemniscatic sine.png|thumb|upright=1.3|The lemniscate sine relates the arc length to the x coordinate in the rectangular elastica.]]
The inverse lemniscate sine also describes the arc length {{
:<math>y = \int_x^1 \frac{t^2\mathop{\mathrm{d}t}}{\sqrt{1 - t^4}},\quad s = \operatorname{arcsl} x = \int_0^x \frac{\mathrm{d}t}{\sqrt{1 - t^4}}</math>
Line 479:
}}
| <math>\phi_N \leftarrow 2^N a_N \sqrt2x</math>
| '''for each''' {{
{{ubl |item_style=padding:0.2em 0 0 1.6em;
| <math>\phi_{n-1} \leftarrow \tfrac12\left(\phi_n + {\arcsin}{\left(\frac{c_n}{a_n}\sin \phi_n\right)}\right)</math>
Line 659:
:<math>M(z)=z\exp\left(-\int_0^z\int_0^w \left(\frac{1}{\operatorname{sl}^2v}-\frac{1}{v^2}\right)\, \mathrm dv\,\mathrm dw\right),</math>
:<math>N(z)=\exp\left(\int_0^z\int_0^w \operatorname{sl}^2v\,\mathrm dv\,\mathrm dw\right)</math>
where the contours do not cross the poles; while the innermost integrals are path-independent, the outermost ones are path-dependent; however, the path dependence cancels out with the non-injectivity of the complex [[exponential function]].
An alternative way of expressing the lemniscate functions as a ratio of entire functions involves the theta functions (see [[#Methods of computation|Lemniscate elliptic functions § Methods of computation]]); the relation between <math>M,N</math> and <math>\theta_1,\theta_3</math> is
Line 670:
=== Relation to Weierstrass and Jacobi elliptic functions ===
The lemniscate functions are closely related to the [[Weierstrass elliptic function]] <math>\wp(z; 1, 0)</math> (the "lemniscatic case"), with invariants {{
The related case of a Weierstrass elliptic function with {{
The square of the lemniscate sine can be represented as
Line 678:
:<math>\operatorname{sl}^2 z=\frac{1}{\wp (z;4,0)}=\frac{i}{2\wp ((1-i)z;-1,0)}={-2\wp}{\left(\sqrt2z+(i-1)\frac{\varpi}{\sqrt2};1,0\right)}</math>
where the second and third argument of <math>\wp</math> denote the lattice invariants {{
:<math>\operatorname{sl}z=-2\frac{\wp (z;-1,0)}{\wp '(z;-1,0)}.</math>
The lemniscate functions can also be written in terms of [[Jacobi elliptic functions]]. The Jacobi elliptic functions <math>\operatorname{sn}</math> and <math>\operatorname{cd}</math> with positive real elliptic modulus have an "upright" rectangular lattice aligned with real and imaginary axes. Alternately, the functions <math>\operatorname{sn}</math> and <math>\operatorname{cd}</math> with modulus {{
:<math> \operatorname{sl} z = \operatorname{sn}(z;i)=\operatorname{sc}(z;\sqrt{2})={\tfrac1{\sqrt2}\operatorname{sd}}\left(\sqrt2z;\tfrac{1}{\sqrt2}\right) </math>
Line 711:
&\quad {}= \frac 2 {2 + \sqrt{7} + \sqrt{21 + 8 \sqrt{7}} + \sqrt{2 {14 + 6 \sqrt{7} + \sqrt{455 + 172 \sqrt{7}}}}}
\\[18mu]
& {\operatorname{sl}}\bigl(\tfrac1{18}\varpi\bigr)\, {\operatorname{sl}}\bigl(\tfrac3{18}\varpi\bigr)\,{\operatorname{sl}}\bigl(\tfrac5{18}\varpi\bigr)\,{\operatorname{sl}}\bigl(\tfrac7{18}\varpi\bigr) \\
&\quad {}= \sqrt[8]{\frac{\lambda (9i)}{1-\lambda (9i)}}
=
\end{aligned}</math>
Line 731:
:<math> \operatorname{arccl} x = \int_{x}^{1} \frac{\mathrm dt}{\sqrt{1-t^4}} = \tfrac12\varpi - \operatorname{arcsl}x</math>
For {{
For the halving of the lemniscate arc length these formulas are valid:{{cn|date=September 2024}}
Line 775:
=== Use in integration ===
The lemniscate arcsine can be used to integrate many functions. Here is a list of important integrals (the [[Constant of integration|constants of integration]] are omitted):
:<math>\int\frac{1}{\sqrt{1-x^4}}\,\mathrm dx=\operatorname{arcsl} x</math>
Line 806:
[[File:Slh in the complex plane.png|thumb|The hyperbolic lemniscate sine in the complex plane. Dark areas represent zeros and bright areas represent poles. The complex argument is represented by varying hue.]]
For convenience, let <math>\sigma=\sqrt{2}\varpi</math>. <math>\sigma</math> is the "squircular" analog of <math>\pi</math> (see below). The decimal expansion of <math>\sigma</math> (i.e. <math>3.7081\ldots</math><ref>
The hyperbolic lemniscate sine ({{math|slh}}) and cosine ({{math|clh}}) can be defined as inverses of elliptic integrals as follows:
Line 862:
[[File:Superellipse chamfered square.svg|thumb|280x280px|Superellipse with the relation <math>x^4 + y^4 = 1</math>]]
In a quartic [[Fermat curve]] <math>x^4 + y^4 = 1</math> (sometimes called a [[squircle]]) the hyperbolic lemniscate sine and cosine are analogous to the tangent and cotangent functions in a unit circle <math>x^2 + y^2 = 1</math> (the quadratic Fermat curve). If the origin and a point on the curve are connected to each other by a line {{
:<math>M(1,1/\sqrt{2})=\frac{\pi}{\sigma}</math>
Line 872:
:<math> \operatorname{slh}(a+b) = \frac{\operatorname{slh}a\operatorname{slh}'b + \operatorname{slh}b\operatorname{slh}'a}{1-\operatorname{slh}^2a\,\operatorname{slh}^2b} </math>
When <math>u</math> is real, the derivative and the original [[antiderivative]] of <math> \operatorname{slh} </math> and <math> \operatorname{clh} </math> can be expressed in this way:
:{|class = "wikitable"
Line 896:
:<math>\text{ctlh}(u) = \frac{\text{cd}(u;\tfrac{1}{2}\sqrt{2})}{\sqrt[4]{\text{cd}(u;\tfrac{1}{2}\sqrt{2})^4 + \text{sn}(u;\tfrac{1}{2}\sqrt{2})^4}} </math>
When <math>u</math> is real, the derivative and [[quarter period]] integral of <math> \operatorname{tlh} </math> and <math> \operatorname{ctlh} </math> can be expressed in this way:
:{|class = "wikitable"
Line 930:
:<math>y(w) = \text{tlh}(w) </math>
The sketch also shows the fact that the derivation of the Areasinus hyperbolic lemniscatus function is equal to the reciprocal of the square root of the successor of the [[fourth power]] function.
==== First proof: comparison with the derivative of the arctangent ====
Line 1,165:
:<math>\mathrm{H}_8=\frac{3}{10},\,\mathrm{H}_{12}=\frac{567}{130},\,\mathrm{H}_{16}=\frac{43\,659}{170},\,\ldots</math>
Also<ref>{{cite journal |last1=Katz |first1=Nicholas M. |date=1975 |title=The congruences of Clausen — von Staudt and Kummer for Bernoulli-Hurwitz numbers
:<math>\operatorname{denom}\mathrm{H}_{4n}=\prod_{(p-1)|4n}p</math>
where <math>p\in\mathbb{P}</math> such that <math>p\not\equiv 3\,(\text{mod}\,4),</math>
Line 1,222:
If <math>a</math> and <math>p</math> are coprime, then there exist numbers <math>p'\in\mathbb{Z}[i]</math> (see<ref>{{cite journal |last1=Eisenstein |first1=G.
|title=Beiträge zur Theorie der elliptischen Functionen |language=German|journal=Journal für die reine und angewandte Mathematik|date=1846 |volume=30| url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0030?tify=%7B%22pages%22%3A%5B202%5D%2C%22view%22%3A%22scan%22%7D}} Eisenstein uses <math>\varphi=\operatorname{sl}</math> and <math>\omega=2\varpi</math>.</ref> for these numbers) such that<ref>{{
:<math>\left(\frac{a}{p}\right)_4=\prod_{p'} \frac{\operatorname{sl}(2\varpi ap'/p)}{\operatorname{sl}(2\varpi p'/p)}.</math>
This theorem is analogous to
Line 1,250:
== Notes ==
{{Reflist|30em}}
== External links ==▼
* {{Cite episode |last1=Parker |first1=Matt |author-link1=Matt Parker |title=What is the area of a Squircle?|url=https://www.youtube.com/watch?v=gjtTcyWL0NA |archive-url=https://ghostarchive.org/varchive/youtube/20211219/gjtTcyWL0NA |archive-date=2021-12-19 |url-status=live|series=Stand-up Maths |date=2021 |network=YouTube }}{{cbignore}}▼
* {{Cite episode |last=Ramalingam |first=Muthu Veerappan|title=Bernoulli Lemniscate and the Squircle <math>||</math> A remarkable Geometric fun fact!!? |url=https://www.youtube.com/watch?v=mAzIE5OkqWE |archive-url=https://ghostarchive.org/varchive/mAzIE5OkqWE |archive-date=2024-11-10 |url-status=live|series=Act of Learning |date=2023 |network=YouTube}}{{cbignore}} Relation shown in the video amounts to <math>\operatorname{cl}(\sqrt{2}t)=\frac{\cos_4^2(t)-\sin_4^2(t)}{\cos_4^2(t)+\sin_4^2(t)}</math>▼
== References ==
Line 1,264 ⟶ 1,258:
[[Niels Henrik Abel|Abel, Niels Henrik]] (1827–1828) "Recherches sur les fonctions elliptiques" [Research on elliptic functions] (in French). ''[[Crelle's Journal]]''.<br />[https://gdz.sub.uni-goettingen.de/id/PPN243919689_0002?tify={%22pages%22:%5B113%5D} Part 1]. 1827. '''2''' (2): 101–181. [[doi (identifier)|doi]]:[https://doi.org/10.1515%2Fcrll.1827.2.101 10.1515/crll.1827.2.101].<br />[https://gdz.sub.uni-goettingen.de/id/PPN243919689_0003?tify={%22pages%22:%5B166%5D} Part 2]. 1828. '''3''' (3): 160–190. [[doi (identifier)|doi]]:[https://doi.org/10.1515%2Fcrll.1828.3.160 10.1515/crll.1828.3.160].
}}
* {{cite book
| last = Adams |first = Oscar S. | author-link = Oscar S. Adams
| year = 1925
| title = Elliptic Functions Applied to Conformal World Maps
| id = Special Pub. No. 112
| others = U.S. Coast and Geodetic Survey
| publisher = US Government Printing Office
| url = https://geodesy.noaa.gov/library/pdfs/Special_Publication_No_112.pdf
}}
* {{cite journal |last1=Ayoub |first1=Raymond |authorlink1=Raymond Ayoub |date=1984 |title=The Lemniscate and Fagnano's Contributions to Elliptic Integrals |journal=Archive for History of Exact Sciences |volume=29 |issue=2 |pages=131–149 |doi=10.1007/BF00348244 }}
* {{Cite book |last1=Berndt |first1=Bruce C. |title=Ramanujan's Notebooks Part IV |publisher=Springer |year=1994 |edition=First |isbn=978-1-4612-6932-8 }}
* {{cite book |last1=Borwein |first1=Jonatham M. |authorlink1=Jonathan Borwein |last2=Borwein |first2=Peter B. |authorlink2=Peter Borwein |date= 1987 |chapter=2.7 The Landen Transformation |pages=60 |title=Pi and the AGM |publisher=Wiley-Interscience }}
* {{cite book |last1=Bottazzini |first1=Umberto |authorlink1=Umberto Bottazzini |last2=Gray |first2=Jeremy |authorlink2=Jeremy Gray (mathematician) |date=2013 |title=Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory |publisher=Springer |doi=10.1007/978-1-4614-5725-1 |isbn=978-1-4614-5724-4 }}
* {{cite book |last=Carlson |first=Billie C. |year=2010 |authorlink1=Bille C. Carlson |display-editors=1 |editor1-last=Olver |editor1-first=Frank |editor1-link=Frank W. J. Olver |editor2-last=Lozier |editor2-first=Daniel |editor3-last=Boisvert |editor3-first=Ronald |editor4-last=Clark |editor4-first=Charles |title=NIST Handbook of Mathematical Functions |publisher=Cambridge |chapter=19. Elliptic Integrals |chapter-url=https://dlmf.nist.gov/19 |title-link=Digital Library of Mathematical Functions }}
* {{cite journal |last=Cox |first=David Archibald |authorlink1=David A. Cox |date=
* {{cite journal |last1=Cox |first1=David Archibald |last2=Shurman |first2=Jerry |date=2005 |title=Geometry and number theory on clovers |journal=The American Mathematical Monthly |volume=112 |issue=8 |pages=682–704 |doi=10.1080/00029890.2005.11920241 |url=https://people.reed.edu/~jerry/Clover/cloverexcerpt.pdf }}
* {{cite book |last1=Cox |first1=David Archibald |year=2012 |chapter=The Lemniscate |pages=463–514 |title=Galois Theory |publisher=Wiley |doi=10.1002/9781118218457.ch15 |isbn=978-1-118-07205-9 }}
* {{Cite book |last1=Cox |first1=David Archibald |title=Primes of the Form ''{{math|''x''<sup>2</sup> + ''ny''<sup>2</sup>}}'' |publisher=Wiley |year=2013 |edition=Second |url=https://dacox.people.amherst.edu/primes.html }}
* {{cite journal |last1=Cox |first1=David Archibald |first2=Trevor |last2=Hyde |year=2014 |title=The Galois theory of the lemniscate |journal=Journal of Number Theory |volume=135 |pages=43–59 |url=http://www-personal.umich.edu/~tghyde/Cox,%20Hyde%20--%20Galois%20theory%20on%20the%20lemniscate.pdf |doi=10.1016/j.jnt.2013.08.006 |arxiv=1208.2653 }}
Line 1,290 ⟶ 1,292:
* {{cite book |last1= Houzel |first1=Christian |author-link1=Christian Houzel |date=1978 |chapter=Fonctions elliptiques et intégrales abéliennes |trans-chapter=Elliptic functions and Abelian integrals |editor-last=Dieudonné |editor-first= Jean |editor-link1=Jean Dieudonné |title= Abrégé d'histoire des mathématiques, 1700–1900. II |publisher=Hermann |pages=1–113 |language=fr}}
* {{cite journal |last1=Hyde |first1=Trevor |year=2014 |title=A Wallis product on clovers |journal=The American Mathematical Monthly |volume=121 |issue=3 |pages=237–243 |url=https://math.uchicago.edu/~tghyde/Hyde%20--%20A%20Wallis%20product%20on%20clovers.pdf |doi=10.4169/amer.math.monthly.121.03.237 }}
* {{cite journal |last1=Kubota |first1=Tomio |authorlink1=Tomio Kubota |date=1964 |title=Some arithmetical applications of an elliptic function |journal=Crelle's Journal |volume='''214'''/'''215''' |pages=141–145 |doi=10.1515/crll.1964.214-215.141 }}
* {{cite journal |last1=Langer |first1=Joel C. |first2=David A. |last2=Singer |year=2010 |title=Reflections on the Lemniscate of Bernoulli: The Forty-Eight Faces of a Mathematical Gem |journal=Milan Journal of Mathematics |volume=78 |issue=2 |pages=643–682 |url=https://case.edu/artsci/math/langer/jlpreprints/fortyeight2010.pdf |doi=10.1007/s00032-010-0124-5 }}
* {{cite journal |last1=Langer |first1=Joel C. |first2=David A. |last2=Singer |year=2011 |title=The lemniscatic chessboard |journal=Forum Geometricorum |volume=11 |pages=183–199 |url=https://forumgeom.fau.edu/FG2011volume11/FG201119index.html }}
* {{cite book |last1=Lawden |first1=Derek Frank |authorlink1=Derek Frank Lawden |title=Elliptic Functions and Applications |series=Applied Mathematical Sciences |date=1989 |volume=80 |publisher=Springer-Verlag |doi=10.1007/978-1-4757-3980-0 |isbn=978-1-4419-3090-3 }}
* {{cite book
| last = Lee | first = L. P. | author-link = Laurence Patrick Lee
Line 1,305 ⟶ 1,307:
* {{Cite book |last1=Lemmermeyer |first1=Franz |title=Reciprocity Laws: From Euler to Eisenstein |publisher=Springer |year=2000 |isbn=3-540-66957-4}}
* {{cite tech report |last1=Levien |first1=Raph |year=2008 |authorlink1=Raph Levien |title=The elastica: a mathematical history |number=UCB/EECS-2008-103 |institution=University of California at Berkeley |url=https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.pdf}}
* {{cite journal |last1=Levin |first1=Aaron |title=A Geometric Interpretation of an Infinite Product for the Lemniscate Constant |journal=The American Mathematical Monthly |date=2006 |volume=113 |issue=6 |pages=510–520 |doi=10.
* {{cite journal |last1=Lindqvist |first1=Peter |last2=Peetre |first2=Jaak |authorlink2=Jaak Peetre |title=Two Remarkable Identities, Called Twos, for Inverses to Some Abelian Integrals |journal=The American Mathematical Monthly |date=2001 |volume=108 |issue=5 |pages=403–410 |doi=10.1080/00029890.2001.11919766 |url=https://people.math.osu.edu/lang.162/book/LiPe3.pdf |archive-url=https://web.archive.org/web/20220528124044/https://people.math.osu.edu/lang.162/book/LiPe3.pdf |archive-date=2022-05-28 }}
* {{cite book |last1=Markushevich |first1=Aleksei Ivanovich |authorlink1=Aleksei Ivanovich Markushevich |title=The Remarkable Sine Functions |date= 1966 |publisher=Elsevier |url=https://archive.org/details/markushevich-the-remarkable-sine-functions/ }}
* {{cite book |last1=Markushevich |first1=Aleksei Ivanovich |title=Introduction to the Classical Theory of Abelian Functions |series=Translations of Mathematical Monographs |date=1992 |volume=96 |publisher=American Mathematical Society |doi=10.1090/mmono/096 |isbn=978-0-8218-4164-8 }}
*{{cite tech report | last1=McGregor |first1= John L. |date=2005 |title=C-CAM: Geometric Aspects and Dynamical Formulation |institution=[[CSIRO Oceans and Atmosphere|CSIRO Atmospheric Research]] |number=70 |url=https://publications.csiro.au/rpr/pub?pid=procite:eb33ff33-c6d6-4779-8b82-867b2ca6e112 }}
* {{cite book |last1=McKean |first1=Henry |authorlink1=Henry McKean |last2=Moll |first2=Victor |author-link2=Victor Hugo Moll |date=1999 |title=Elliptic Curves: Function Theory, Geometry, Arithmetic |publisher=Cambridge |isbn=9780521582285 |url=https://
* {{cite book |last1=Milne-Thomson |first1=Louis Melville |authorlink1=L. M. Milne-Thomson |date=1964 |contribution=16. Jacobian Elliptic Functions and Theta Functions |pages=567–585 |contribution-url=https://archive.org/details/handbookofmathem00abra/page/567/ |editor1-first=Milton |editor1-last=Abramowitz |editor1-link=Milton Abramowitz |editor2-first=Irene Ann |editor2-last=Stegun |editor2-link=Irene Stegun |title=Handbook of Mathematical Functions |title-link=Abramowitz and Stegun |publisher=National Bureau of Standards }}
* {{cite journal |last1=Neuman |first1=Edward |authorlink1=Edward Neuman |year=2007 |title=On Gauss lemniscate functions and lemniscatic mean |journal=Mathematica Pannonica |volume=18 |issue=1 |pages=77–94 |url=http://mathematica-pannonica.ttk.pte.hu/articles/mp18-1/MP18-1(2007)pp077-094.pdf }}
* {{cite journal |last1=Nishimura |first1=Ryo |title=New properties of the lemniscate function and its transformation |journal=Journal of Mathematical Analysis and Applications |date=2015 |volume=427 |issue=1 |pages=460–468 |doi=10.1016/j.jmaa.2015.02.066 |doi-access=free }}
* {{cite journal |last1=Ogawa |first1=Takuma |title=Similarities between the trigonometric function and the lemniscate function from arithmetic view point |journal=Tsukuba Journal of Mathematics |date=2005 |volume=29 |issue=1 |
* {{cite journal |last1=Peirce |first1=Charles Sanders |authorlink1=Charles Sanders Peirce |date=1879 |title=A Quincuncial Projection of the Sphere |journal=American Journal of Mathematics |volume=2 |issue=4 |pages=394–397 |doi=10.2307/2369491 |doi-access=free |jstor=2369491 |jstor-access=free |url=https://archive.org/details/sim_american-journal-of-mathematics_1879_2/page/n403/mode/2up}}
* {{cite book |last=Popescu-Pampu |first=Patrick |date=2016 |title=What is the Genus? |series=Lecture Notes in Mathematics |volume=2162 |publisher=Springer |doi=10.1007/978-3-319-42312-8 |isbn=978-3-319-42311-1 }}
* {{cite book |last1=Prasolov |first1=Viktor |last2=Solovyev |first2=Yuri |date=1997 |chapter=4. Abel's Theorem on Division of Lemniscate |title=Elliptic functions and elliptic integrals |series=Translations of Mathematical Monographs |volume=170 |publisher=American Mathematical Society. |doi=10.1090/mmono/170 |isbn=978-0-8218-0587-9 }}
* {{cite journal| last1=Rančić |first1=Miodrag |last2=Purser |first2=R. James | last3=Mesinger |first3=Fedor |date=1996 |title=A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates |journal=Quarterly Journal of the Royal Meteorological Society |volume=122 |issue=532 |pages=959–982 |doi=10.1002/qj.49712253209 |bibcode=<!-- useless bibcode 1996QJRMS.122..959R --> }}
* {{cite book |last1=Reinhardt |first1=William P. |last2=Walker |first2=Peter L. |year=2010a |display-editors=1 |editor1-last=Olver |editor1-first=Frank |editor2-last=Lozier |editor2-first=Daniel |editor3-last=Boisvert |editor3-first=Ronald |editor4-last=Clark |editor4-first=Charles |title=NIST Handbook of Mathematical Functions |publisher=Cambridge |chapter=22. Jacobian Elliptic Functions |chapter-url=https://dlmf.nist.gov/22 |title-link=Digital Library of Mathematical Functions }}
* {{cite book |last1=Reinhardt |first1=William P. |last2=Walker |first2=Peter L. |year=2010b |display-editors=1 |editor1-last=Olver |editor1-first=Frank |editor2-last=Lozier |editor2-first=Daniel |editor3-last=Boisvert |editor3-first=Ronald |editor4-last=Clark |editor4-first=Charles |title=NIST Handbook of Mathematical Functions |publisher=Cambridge |chapter=23. Weierstrass Elliptic and Modular Functions |chapter-url=https://dlmf.nist.gov/23 |title-link=Digital Library of Mathematical Functions }}
* {{
* {{
* {{cite journal |last1=Rosen |first1=Michael |authorlink1=Michael Rosen (mathematician) |title=Abel's Theorem on the Lemniscate |journal=The American Mathematical Monthly |date=1981 |volume=88 |issue=6 |pages=387–395 |doi=10.
* {{cite book |last1=Roy |first1=Ranjan |title=Elliptic and Modular Functions from Gauss to Dedekind to Hecke |publisher=Cambridge University Press |page=28 |year=2017 |isbn=978-1-107-15938-9}}
* {{cite book |chapter=Some milestones of lemniscatomy |last1=Schappacher |first1=Norbert |author-link1=Norbert Schappacher | date= 1997 |editor1-last=Sertöz |editor1-first=S. |title=Algebraic Geometry |type=Proceedings of Bilkent Summer School, August 7–19, 1995, Ankara, Turkey |publisher=Marcel Dekker |pages=257–290 | chapter-url=http://irma.math.unistra.fr/~schappa/NSch/Publications_files/1997_LemniscProvis.pdf}}
Line 1,340 ⟶ 1,342:
* {{cite book |last1=Whittaker |first1=Edmund Taylor |authorlink1=Edmund T. Whittaker |last2=Watson |first2=George Neville |authorlink2=George N. Watson |date= 1927 |orig-date=4th ed. 1927 |chapter=21 The theta functions |pages=469–470 |edition=4th |title=A Course of Modern Analysis |title-link=A Course of Modern Analysis |publisher= Cambridge }}
{{refend}}
▲== External links ==
▲* {{Cite episode |last1=Parker |first1=Matt |author-link1=Matt Parker |title=What is the area of a Squircle?|url=https://www.youtube.com/watch?v=gjtTcyWL0NA
▲* {{Cite episode |last=Ramalingam |first=Muthu Veerappan|title=Bernoulli Lemniscate and the Squircle <math>||</math> A remarkable Geometric fun fact!!? |url=https://www.youtube.com/watch?v=mAzIE5OkqWE
{{bots|deny=Citation bot}}
|