Content deleted Content added
mNo edit summary |
|||
(23 intermediate revisions by 8 users not shown) | |||
Line 11:
The lemniscate functions have periods related to a number {{math|<math>\varpi =</math> 2.622057...}} called the [[lemniscate constant]], the ratio of a lemniscate's perimeter to its diameter. This number is a [[Quartic plane curve|quartic]] analog of the ([[Conic section|quadratic]]) {{math|<math>\pi =</math> 3.141592...}}, [[pi|ratio of perimeter to diameter of a circle]].
As [[complex analysis|complex functions]], {{math|sl}} and {{math|cl}} have a [[square lattice|square]] [[period lattice]] (a multiple of the [[Gaussian integer]]s) with [[Fundamental pair of periods|fundamental periods]] <math>\{(1 + i)\varpi, (1 - i)\varpi\},</math><ref>The fundamental periods <math>(1+i)\varpi</math> and <math>(1-i)\varpi</math> are "minimal" in the sense that they have the smallest absolute value of all periods whose real part is non-negative.</ref> and are a special case of two [[Jacobi elliptic functions]] on that lattice, <math>\operatorname{sl} z = \operatorname{sn}(z;
Similarly, the '''hyperbolic lemniscate sine''' {{math|slh}} and '''hyperbolic lemniscate cosine''' {{math|clh}} have a square period lattice with fundamental periods <math>\bigl\{\sqrt2\varpi, \sqrt2\varpi i\bigr\}.</math>
Line 39:
[[File:Lemniscate constant as an integral.png|thumb|upright=1.3|The lemniscate sine function and hyperbolic lemniscate sine functions are defined as inverses of elliptic integrals. The complete integrals are related to the lemniscate constant {{mvar|ϖ}}.]]
The lemniscate functions have minimal real period {{
:<math>\varpi = 2\int_0^1\frac{\mathrm{d}t}{\sqrt{1-t^4}} = 2.62205\ldots</math>
Line 45:
The lemniscate functions satisfy the basic relation <math>\operatorname{cl}z = {\operatorname{sl}}\bigl(\tfrac12\varpi - z\bigr),</math> analogous to the relation <math>\cos z = {\sin}\bigl(\tfrac12\pi - z\bigr).</math>
The lemniscate constant {{
<math display="block">
Line 51:
</math>
An analogous formula for {{
<math display="block">
Line 57:
</math>
The [[Machin-like formula|Machin formula]] for {{
The lemniscate and circle constants were found by Gauss to be related to each-other by the [[arithmetic-geometric mean]] {{
<math display="block">
Line 91:
\end{aligned}</math>
As a result, both functions are invariant under translation by an [[Gaussian integer#Examples|even-Gaussian-integer]] multiple of <math>\varpi</math>.<ref>The even Gaussian integers are the residue class of {{tmath|0}}, modulo {{
:<math>\begin{aligned}
Line 109:
\end{aligned}</math>
The {{math|sl}} function has simple [[zeros and poles|zeros]] at Gaussian integer multiples of {{
Also
Line 235:
:<math>
\operatorname{cl}^2 \tfrac12x = \frac{1+\operatorname{cl}x \sqrt{1+\operatorname{sl}^2x}}{1 + \sqrt{1+\operatorname{sl}^2x}
</math>
:<math>
\operatorname{sl}^2 \tfrac12x = \frac{1-\operatorname{cl}x\sqrt{1+\operatorname{sl}^2x}}{1 + \sqrt{1+\operatorname{sl}^2x}
</math>
Line 294:
===Specific values===
Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into {{
{| class="wikitable"
Line 387:
[[File:Lemniscate 15-gon.png|thumb|right|upright=1.5|A lemniscate divided into 15 sections of equal arclength (red curves). Because the prime factors of 15 (3 and 5) are both Fermat primes, this polygon (in black) is constructible using a straightedge and compass.]]
Later mathematicians generalized this result. Analogously to the [[constructible polygon]]s in the circle, the lemniscate can be divided into {{
Let <math>r_j=\operatorname{sl}\dfrac{2j\varpi}{n}</math>. Then the {{
:<math>\left(r_j\sqrt{\tfrac12\bigl(1+r_j^2\bigr)},\ (-1)^{\left\lfloor 4j/n\right\rfloor} \sqrt{\tfrac12r_j^2\bigl(1-r_j^2\bigr)}\right),\quad j\in\{1,2,\ldots ,n\}</math>
Line 397:
=== Arc length of rectangular elastica ===
[[File:Rectangular elastica and lemniscatic sine.png|thumb|upright=1.3|The lemniscate sine relates the arc length to the x coordinate in the rectangular elastica.]]
The inverse lemniscate sine also describes the arc length {{
:<math>y = \int_x^1 \frac{t^2\mathop{\mathrm{d}t}}{\sqrt{1 - t^4}},\quad s = \operatorname{arcsl} x = \int_0^x \frac{\mathrm{d}t}{\sqrt{1 - t^4}}</math>
Line 479:
}}
| <math>\phi_N \leftarrow 2^N a_N \sqrt2x</math>
| '''for each''' {{
{{ubl |item_style=padding:0.2em 0 0 1.6em;
| <math>\phi_{n-1} \leftarrow \tfrac12\left(\phi_n + {\arcsin}{\left(\frac{c_n}{a_n}\sin \phi_n\right)}\right)</math>
Line 670:
=== Relation to Weierstrass and Jacobi elliptic functions ===
The lemniscate functions are closely related to the [[Weierstrass elliptic function]] <math>\wp(z; 1, 0)</math> (the "lemniscatic case"), with invariants {{
The related case of a Weierstrass elliptic function with {{
The square of the lemniscate sine can be represented as
Line 678:
:<math>\operatorname{sl}^2 z=\frac{1}{\wp (z;4,0)}=\frac{i}{2\wp ((1-i)z;-1,0)}={-2\wp}{\left(\sqrt2z+(i-1)\frac{\varpi}{\sqrt2};1,0\right)}</math>
where the second and third argument of <math>\wp</math> denote the lattice invariants {{
:<math>\operatorname{sl}z=-2\frac{\wp (z;-1,0)}{\wp '(z;-1,0)}.</math>
The lemniscate functions can also be written in terms of [[Jacobi elliptic functions]]. The Jacobi elliptic functions <math>\operatorname{sn}</math> and <math>\operatorname{cd}</math> with positive real elliptic modulus have an "upright" rectangular lattice aligned with real and imaginary axes. Alternately, the functions <math>\operatorname{sn}</math> and <math>\operatorname{cd}</math> with modulus {{
:<math> \operatorname{sl} z = \operatorname{sn}(z;i)=\operatorname{sc}(z;\sqrt{2})={\tfrac1{\sqrt2}\operatorname{sd}}\left(\sqrt2z;\tfrac{1}{\sqrt2}\right) </math>
Line 711:
&\quad {}= \frac 2 {2 + \sqrt{7} + \sqrt{21 + 8 \sqrt{7}} + \sqrt{2 {14 + 6 \sqrt{7} + \sqrt{455 + 172 \sqrt{7}}}}}
\\[18mu]
& {\operatorname{sl}}\bigl(\tfrac1{18}\varpi\bigr)\, {\operatorname{sl}}\bigl(\tfrac3{18}\varpi\bigr)\,{\operatorname{sl}}\bigl(\tfrac5{18}\varpi\bigr)\,{\operatorname{sl}}\bigl(\tfrac7{18}\varpi\bigr) \\
&\quad {}= \sqrt[8]{\frac{\lambda (9i)}{1-\lambda (9i)}}
=
\end{aligned}</math>
Line 731:
:<math> \operatorname{arccl} x = \int_{x}^{1} \frac{\mathrm dt}{\sqrt{1-t^4}} = \tfrac12\varpi - \operatorname{arcsl}x</math>
For {{
For the halving of the lemniscate arc length these formulas are valid:{{cn|date=September 2024}}
Line 862:
[[File:Superellipse chamfered square.svg|thumb|280x280px|Superellipse with the relation <math>x^4 + y^4 = 1</math>]]
In a quartic [[Fermat curve]] <math>x^4 + y^4 = 1</math> (sometimes called a [[squircle]]) the hyperbolic lemniscate sine and cosine are analogous to the tangent and cotangent functions in a unit circle <math>x^2 + y^2 = 1</math> (the quadratic Fermat curve). If the origin and a point on the curve are connected to each other by a line {{
:<math>M(1,1/\sqrt{2})=\frac{\pi}{\sigma}</math>
Line 896:
:<math>\text{ctlh}(u) = \frac{\text{cd}(u;\tfrac{1}{2}\sqrt{2})}{\sqrt[4]{\text{cd}(u;\tfrac{1}{2}\sqrt{2})^4 + \text{sn}(u;\tfrac{1}{2}\sqrt{2})^4}} </math>
When <math>u</math> is real, the derivative and [[quarter period]] integral of <math> \operatorname{tlh} </math> and <math> \operatorname{ctlh} </math> can be expressed in this way:
:{|class = "wikitable"
Line 930:
:<math>y(w) = \text{tlh}(w) </math>
The sketch also shows the fact that the derivation of the Areasinus hyperbolic lemniscatus function is equal to the reciprocal of the square root of the successor of the [[fourth power]] function.
==== First proof: comparison with the derivative of the arctangent ====
Line 1,270:
* {{Cite book |last1=Berndt |first1=Bruce C. |title=Ramanujan's Notebooks Part IV |publisher=Springer |year=1994 |edition=First |isbn=978-1-4612-6932-8 }}
* {{cite book |last1=Borwein |first1=Jonatham M. |authorlink1=Jonathan Borwein |last2=Borwein |first2=Peter B. |authorlink2=Peter Borwein |date= 1987 |chapter=2.7 The Landen Transformation |pages=60 |title=Pi and the AGM |publisher=Wiley-Interscience }}
* {{cite book |last1=Bottazzini |first1=Umberto |authorlink1=Umberto Bottazzini |last2=Gray |first2=Jeremy |authorlink2=Jeremy Gray (mathematician) |date=2013 |title=Hidden Harmony – Geometric Fantasies: The Rise of Complex Function Theory |publisher=Springer |doi=10.1007/978-1-4614-5725-1 |isbn=978-1-4614-5724-4 }}
* {{cite book |last=Carlson |first=Billie C. |year=2010 |authorlink1=Bille C. Carlson |display-editors=1 |editor1-last=Olver |editor1-first=Frank |editor1-link=Frank W. J. Olver |editor2-last=Lozier |editor2-first=Daniel |editor3-last=Boisvert |editor3-first=Ronald |editor4-last=Clark |editor4-first=Charles |title=NIST Handbook of Mathematical Functions |publisher=Cambridge |chapter=19. Elliptic Integrals |chapter-url=https://dlmf.nist.gov/19 |title-link=Digital Library of Mathematical Functions }}
* {{cite journal |last=Cox |first=David Archibald |authorlink1=David A. Cox |date=1984 |title=The Arithmetic-Geometric Mean of Gauss |url=https://www.researchgate.net/publication/248675540 |journal=L'Enseignement Mathématique |volume=30 |issue=2 |pages=275–330 }}
|