Content deleted Content added
m Open access bot: url-access updated in citation with #oabot. |
m →Further reading: HTTP to HTTPS for Cornell University |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1:
{{
{{About|Emmy Noether's first theorem, which derives conserved quantities from symmetries|}}
{{Use American English|date=March 2019}}
[[File:Noether theorem 1st page.png|thumb| First page of [[Emmy Noether]]'s article "Invariante Variationsprobleme" (1918), where she proved her theorem]]
{{
'''Noether's theorem''' states that every [[continuous symmetry]] of the [[action (physics)|action]] of a physical system with [[conservative force]]s has a corresponding [[conservation law]]. This is the first of two theorems (see [[Noether's second theorem]]) published by the mathematician [[Emmy Noether]] in 1918.<ref>{{cite journal | last= Noether |first=E. | year = 1918 | title = Invariante Variationsprobleme | journal = Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen |series=Mathematisch-Physikalische Klasse | volume = 1918 | pages = 235–257 |url= https://eudml.org/doc/59024}}</ref> The action of a physical system is the [[time integral|integral over time]] of a [[Lagrangian mechanics|Lagrangian]] function, from which the system's behavior can be determined by the [[principle of least action]]. This theorem applies to continuous and smooth [[Symmetry (physics) |symmetries of physical space]]. Noether's formulation is quite general and has been applied across classical mechanics, high energy physics, and recently [[statistical mechanics]].<ref>{{cite journal | title = Gauge Invariance of Equilibrium Statistical Mechanics | journal = Physical Review Letters | year = 2024 | volume = 133 | issue = 21 | doi = 10.1103/PhysRevLett.133.217101 | last1 =
Noether's theorem is used in [[theoretical physics]] and the [[calculus of variations]]. It reveals the fundamental relation between the symmetries of a physical system and the conservation laws. It also made modern theoretical physicists much more focused on symmetries of physical systems. A generalization of the formulations on [[constants of motion]] in Lagrangian and [[Hamiltonian mechanics]] (developed in 1788 and 1833, respectively), it does not apply to systems that cannot be modeled with a Lagrangian alone (e.g., systems with a [[Rayleigh dissipation function]]). In particular, [[dissipative]] systems with [[Continuous symmetry|continuous symmetries]] need not have a corresponding conservation law.{{Citation needed|reason=The source of this claim would be useful.|date=May 2023}}
==Basic illustrations and background==
As an illustration, if a physical system behaves the same regardless of how it is oriented in space (that is, it is [[Invariant (mathematics)|invariant]]), its [[Lagrangian mechanics|Lagrangian]] is symmetric under continuous rotation: from this symmetry, Noether's theorem dictates that the [[angular momentum]] of the system be conserved, as a consequence of its laws of motion.<ref name=":0">{{Cite book |last1=José |first1=Jorge V.
As another example, if a physical process exhibits the same outcomes regardless of place or time, then its Lagrangian is symmetric under continuous translations in space and time respectively: by Noether's theorem, these symmetries account for the [[conservation law]]s of [[momentum|linear momentum]] and [[energy]] within this system, respectively.<ref>{{Cite book |last1=Hand |first1=Louis N.
Noether's theorem is important, both because of the insight it gives into conservation laws, and also as a practical calculational tool. It allows investigators to determine the conserved quantities (invariants) from the observed symmetries of a physical system. Conversely, it allows researchers to consider whole classes of hypothetical Lagrangians with given invariants, to describe a physical system.<ref name=":0" />{{Rp|page=127}} As an illustration, suppose that a physical theory is proposed which conserves a quantity ''X''. A researcher can calculate the types of Lagrangians that conserve ''X'' through a continuous symmetry. Due to Noether's theorem, the properties of these Lagrangians provide further criteria to understand the implications and judge the fitness of the new theory.
Line 708 ⟶ 707:
== Applications ==
Application of Noether's theorem allows physicists to gain
* Invariance of an isolated system with respect to spatial [[translation (physics)|translation]] (in other words, that the laws of physics are the same at all locations in space) gives the law of conservation of [[linear momentum]] (which states that the total linear momentum of an isolated system is constant)
Line 721 ⟶ 720:
==See also==
{{Portal|Mathematics|Physics}}
* [[Conservation law]]
* [[
* [[
* [[Gauge symmetry (mathematics)]]
* [[
* [[
* [[
== References ==
{{
==Further reading==
* {{
* {{
* {{
*{{Cite book | last = Kosmann-Schwarzbach | first = Yvette | author-link = Yvette Kosmann-Schwarzbach | title = The Noether theorems: Invariance and conservation laws in the twentieth century | publisher = [[Springer Science+Business Media|Springer-Verlag]] | series = Sources and Studies in the History of Mathematics and Physical Sciences | year = 2010 | isbn = 978-0-387-87867-6}} [http://www.math.cornell.edu/~templier/junior/The-Noether-theorems.pdf Online copy].▼
* {{
* {{cite journal |last1=Moser |first1=Seth |title=Understanding Noether's Theorem by Visualizing the Lagrangian |journal=Physics Capstone Projects |date=21 April 2020 |pages=1–12 |url=https://digitalcommons.usu.edu/phys_capstoneproject/86/ |access-date=28 August 2020}}▼
* {{
*{{Cite book | last = Olver | first = Peter |author-link=Peter J. Olver | title = Applications of Lie groups to differential equations | publisher = [[Springer Science+Business Media|Springer-Verlag]] | edition = 2nd | series = [[Graduate Texts in Mathematics]] | volume = 107 | year = 1993 | isbn = 0-387-95000-1 }}▼
* {{Cite thesis |last1=Johnson |first1=Tristan |date=2016 |title=Noether's Theorem: Symmetry and Conservation |type=Bachelor's (honors) |url=https://arches.union.edu/do/7fd3d251-014f-40f1-ae43-f08dccc7ee0e |publisher=[[Union College]] |access-date=10 August 2025}}
*{{Cite book | last = Sardanashvily | first = G. | author-link=Gennadi Sardanashvily | title = Noether's Theorems. Applications in Mechanics and Field Theory | publisher = [[Springer Science+Business Media|Springer-Verlag]] | year = 2016 | isbn = 978-94-6239-171-0 }}▼
▲* {{Cite book |
* {{
* {{
▲* {{
* {{
* {{
* {{
▲* {{Cite book |
* {{
* {{
▲* {{Cite book |
==External links==
* [http://www.mathpages.com/home/kmath564/kmath564.htm Noether's Theorem] at MathPages.<!-- Previously a referenced note; reference is lost, but we can assume this is still a valid citation -->▼
▲* {{cite web |author1=Emmy Noether |year=1918 |title=Invariante Variationsprobleme |language=de |url=http://de.wikisource.org/wiki/Invariante_Variationsprobleme }}
▲* {{cite journal |author1=Emmy Noether |translator=Mort Tavel |year=1971 |title=Invariant Variation Problems |journal=Transport Theory and Statistical Physics |volume=1 |issue=3 |pages=186–207 |arxiv=physics/0503066 |doi=10.1080/00411457108231446 |bibcode = 1971TTSP....1..186N |s2cid=119019843 }} (Original in ''Gott. Nachr.'' 1918:235–257)
▲*{{cite arXiv |eprint=physics/9807044 |first=Nina |last=Byers|title=E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws |year=1998}}
▲*{{cite journal |author1=Vladimir Cuesta |author2=Merced Montesinos |author3=José David Vergara |title=Gauge invariance of the action principle for gauge systems with noncanonical symplectic structures |journal=Physical Review D |volume=76 |pages=025025 |year=2007 |issue=2 |doi=10.1103/PhysRevD.76.025025 |bibcode = 2007PhRvD..76b5025C }}
▲*{{cite journal |author1=Hanca, J. |author2=Tulejab, S. |author3=Hancova, M. |title=Symmetries and conservation laws: Consequences of Noether's theorem |journal=American Journal of Physics |volume=72 |issue=4 |pages=428–35 |year=2004 |doi= 10.1119/1.1591764|url=http://www.eftaylor.com/pub/symmetry.html|bibcode = 2004AmJPh..72..428H }}
▲* {{cite arXiv |last1=Leone |first1=Raphaël |title=On the wonderfulness of Noether's theorems, 100 years later, and Routh reduction |date=11 April 2018|class=physics.hist-ph |eprint=1804.01714 }}
▲*[http://www.mathpages.com/home/kmath564/kmath564.htm Noether's Theorem] at MathPages.<!-- Previously a referenced note; reference is lost, but we can assume this is still a valid citation -->
▲*{{cite journal |author1=Merced Montesinos |author2=Ernesto Flores |journal=Revista Mexicana de Física |title=Symmetric energy–momentum tensor in Maxwell, Yang–Mills, and Proca theories obtained using only Noether's theorem |volume=52 |pages=29–36 |year=2006 |issue=1 |url=http://rmf.smf.mx/pdf/rmf/52/1/52_1_29.pdf |arxiv=hep-th/0602190 |bibcode=2006RMxF...52...29M |access-date=2014-11-12 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304023543/http://rmf.smf.mx/pdf/rmf/52/1/52_1_29.pdf |url-status=dead }}
▲* {{cite book | last1 = Neuenschwander | first1 = Dwight E. | title = Emmy Noether's Wonderful Theorem | publisher = Johns Hopkins University Press | year = 2010 | isbn = 978-0-8018-9694-1}}
▲* {{cite arXiv |last1=Quigg |first1=Chris |title=Colloquium: A Century of Noether's Theorem |date=9 July 2019|class=physics.hist-ph |eprint=1902.01989 }}
▲*{{cite journal|author1=Sardanashvily|journal=[[International Journal of Geometric Methods in Modern Physics]]|title=Gauge conservation laws in a general setting. Superpotential |volume=6 |pages=1047–1056 |year=2009 |arxiv=0906.1732|bibcode = 2009arXiv0906.1732S|doi=10.1142/S0219887809003862|issue=6 }}
[[Category:Articles containing proofs]]
[[Category:Calculus of variations]]
|