Noether's theorem: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Removed URL that duplicated identifier. | Use this bot. Report bugs. | #UCB_CommandLine
Bender the Bot (talk | contribs)
 
(One intermediate revision by one other user not shown)
Line 1:
{{shortShort description|Statement relating differentiable symmetries to conserved quantities}}
{{About|Emmy Noether's first theorem, which derives conserved quantities from symmetries|}}
{{Use American English|date=March 2019}}
 
[[File:Noether theorem 1st page.png|thumb| First page of [[Emmy Noether]]'s article "Invariante Variationsprobleme" (1918), where she proved her theorem]]
{{calculusCalculus|expanded=specialized}}
 
'''Noether's theorem''' states that every [[continuous symmetry]] of the [[action (physics)|action]] of a physical system with [[conservative force]]s has a corresponding [[conservation law]]. This is the first of two theorems (see [[Noether's second theorem]]) published by the mathematician [[Emmy Noether]] in 1918.<ref>{{cite journal | last= Noether |first=E. | year = 1918 | title = Invariante Variationsprobleme | journal = Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen |series=Mathematisch-Physikalische Klasse | volume = 1918 | pages = 235–257 |url= https://eudml.org/doc/59024}}</ref> The action of a physical system is the [[time integral|integral over time]] of a [[Lagrangian mechanics|Lagrangian]] function, from which the system's behavior can be determined by the [[principle of least action]]. This theorem applies to continuous and smooth [[Symmetry (physics) |symmetries of physical space]]. Noether's formulation is quite general and has been applied across classical mechanics, high energy physics, and recently [[statistical mechanics]].<ref>{{cite journal | title = Gauge Invariance of Equilibrium Statistical Mechanics | journal = Physical Review Letters | year = 2024 | volume = 133 | issue = 21 | doi = 10.1103/PhysRevLett.133.217101 | last1 = M\"ullerMüller | first1 = Johanna | last2 = Hermann | first2 = Sophie | last3 = Samm\"ullerSammüller | first3 = Florian | last4 = Schmidt | first4 = Matthias | page = 217101 | arxiv = 2406.19235 | bibcode = 2024PhRvL.133u7101M }}</ref>
 
Noether's theorem is used in [[theoretical physics]] and the [[calculus of variations]]. It reveals the fundamental relation between the symmetries of a physical system and the conservation laws. It also made modern theoretical physicists much more focused on symmetries of physical systems. A generalization of the formulations on [[constants of motion]] in Lagrangian and [[Hamiltonian mechanics]] (developed in 1788 and 1833, respectively), it does not apply to systems that cannot be modeled with a Lagrangian alone (e.g., systems with a [[Rayleigh dissipation function]]). In particular, [[dissipative]] systems with [[Continuous symmetry|continuous symmetries]] need not have a corresponding conservation law.{{Citation needed|reason=The source of this claim would be useful.|date=May 2023}}
Line 708 ⟶ 707:
 
== Applications ==
Application of Noether's theorem allows physicists to gain powerful insights into any general theory in physics, by just analyzing the various transformations that would make the form of the laws involved invariant. For example:
 
* Invariance of an isolated system with respect to spatial [[translation (physics)|translation]] (in other words, that the laws of physics are the same at all locations in space) gives the law of conservation of [[linear momentum]] (which states that the total linear momentum of an isolated system is constant)
Line 721 ⟶ 720:
==See also==
{{Portal|Mathematics|Physics}}
* [[Conservation law]]
{{cols}}
* [[ConservationCharge law(physics)]]
* [[ChargeGauge (physics)symmetry]]
* [[Gauge symmetry (mathematics)]]
* [[Gauge symmetryInvariant (mathematicsphysics)]]
* [[InvariantGoldstone (physics)boson]]
* [[GoldstoneSymmetry boson(physics)]]
*[[Symmetry (physics)]]
{{colend}}
 
== References ==
{{reflist|37emReflist}}
 
==Further reading==
* {{citeCite book| isbn=978-3-319-59694-5 |last1=Badin |first1=Gualtiero |last2=Crisciani |first2=Fulvio| |title=Variational Formulation of Fluid and Geophysical Fluid Dynamics: Mechanics, Symmetries and Conservation Laws | publisher=Springer | year=2018 | pages=218 | doi= 10.1007/978-3-319-59695-2 |bibcode=2018vffg.book.....B |isbn=978-3-319-59694-5 |s2cid=125902566}}
* {{citeCite journalweb |last1=JohnsonBaez |first1=TristanJohn |author-link1=John Baez |title=Noether's Theorem: Symmetryin anda Conservation |journal=Honors Theses |date=2016Nutshell |url=httpshttp://digitalworksmath.unionucr.edu/theseshome/163baez/noether.html |website=math.ucr.edu |access-date=28 August 2020 |publisherdate=[[Union College]]2002}}
* {{citeCite arXiv |eprintlast=physics/9807044Byers |first=Nina |last=Byers|title=E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws |year=1998 |eprint=physics/9807044}}
*{{Cite book | last = Kosmann-Schwarzbach | first = Yvette | author-link = Yvette Kosmann-Schwarzbach | title = The Noether theorems: Invariance and conservation laws in the twentieth century | publisher = [[Springer Science+Business Media|Springer-Verlag]] | series = Sources and Studies in the History of Mathematics and Physical Sciences | year = 2010 | isbn = 978-0-387-87867-6}} [http://www.math.cornell.edu/~templier/junior/The-Noether-theorems.pdf Online copy].
* {{citeCite journal |author1last1=Vladimir Cuesta |first1=Vladimir |author2=Merced Montesinos |author3=José David Vergara |title=Gauge invariance of the action principle for gauge systems with noncanonical symplectic structures |journal=Physical Review D |volume=76 |pages=025025 |year=2007 |issue=2 |doi=10.1103/PhysRevD.76.025025 |bibcode = 2007PhRvD..76b5025C }}
* {{cite journal |last1=Moser |first1=Seth |title=Understanding Noether's Theorem by Visualizing the Lagrangian |journal=Physics Capstone Projects |date=21 April 2020 |pages=1–12 |url=https://digitalcommons.usu.edu/phys_capstoneproject/86/ |access-date=28 August 2020}}
* {{citeCite journal |author1=Hanca, J. |author2=Tulejab, S. |author3=Hancova, M. |title=Symmetries and conservation laws: Consequences of Noether's theorem |journal=American Journal of Physics |volume=72 |issue=4 |pages=428–35 |year=2004 |doi= 10.1119/1.1591764 |url=http://www.eftaylor.com/pub/symmetry.html |bibcode = 2004AmJPh..72..428H }}
*{{Cite book | last = Olver | first = Peter |author-link=Peter J. Olver | title = Applications of Lie groups to differential equations | publisher = [[Springer Science+Business Media|Springer-Verlag]] | edition = 2nd | series = [[Graduate Texts in Mathematics]] | volume = 107 | year = 1993 | isbn = 0-387-95000-1 }}
* {{Cite thesis |last1=Johnson |first1=Tristan |date=2016 |title=Noether's Theorem: Symmetry and Conservation |type=Bachelor's (honors) |url=https://arches.union.edu/do/7fd3d251-014f-40f1-ae43-f08dccc7ee0e |publisher=[[Union College]] |access-date=10 August 2025}}
*{{Cite book | last = Sardanashvily | first = G. | author-link=Gennadi Sardanashvily | title = Noether's Theorems. Applications in Mechanics and Field Theory | publisher = [[Springer Science+Business Media|Springer-Verlag]] | year = 2016 | isbn = 978-94-6239-171-0 }}
* {{Cite book | last = Kosmann-Schwarzbach | first = Yvette | author-link = Yvette Kosmann-Schwarzbach | title = The Noether theorems: Invariance and conservation laws in the twentieth century | publisher = [[Springer Science+Business Media |Springer-Verlag]] | series = Sources and Studies in the History of Mathematics and Physical Sciences | year = 2010 | isbn = 978-0-387-87867-6}} [httphttps://www.math.cornell.edu/~templier/junior/The-Noether-theorems.pdf Online copy].
* {{citeCite arXiv |last1=Leone |first1=Raphaël |title=On the wonderfulness of Noether's theorems, 100 years later, and Routh reduction |date=11 April 2018 |class=physics.hist-ph |eprint=1804.01714 }}
* {{citeCite journal |author1last=Merced Montesinos |first=Merced |author2=Ernesto Flores |journal=Revista Mexicana de Física |title=Symmetric energy–momentum tensor in Maxwell, Yang–Mills, and Proca theories obtained using only Noether's theorem |volume=52 |pages=29–36 |year=2006 |issue=1 |url=http://rmf.smf.mx/pdf/rmf/52/1/52_1_29.pdf |arxiv=hep-th/0602190 |bibcode=2006RMxF...52...29M |access-date=2014-11-12 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304023543/http://rmf.smf.mx/pdf/rmf/52/1/52_1_29.pdf |url-status=dead }}
* {{citeCite journal |last1=Moser |first1=Seth |title=Understanding Noether's Theorem by Visualizing the Lagrangian |journal=Physics Capstone Projects |date=21 April 2020 |pages=1–12 |url=https://digitalcommons.usu.edu/phys_capstoneproject/86/ |access-date=28 August 2020}}
* {{citeCite book | last1 = Neuenschwander | first1 = Dwight E. | title = Emmy Noether's Wonderful Theorem | publisher = Johns Hopkins University Press | year = 2010 | isbn = 978-0-8018-9694-1}}
* {{citeCite web |author1last=Emmy Noether |first=Emmy |year=1918 |title=Invariante Variationsprobleme |language=de |url=http://de.wikisource.org/wiki/Invariante_Variationsprobleme }}
* {{citeCite journal |author1last=Emmy Noether |translatorfirst=Mort TavelEmmy |year=1971 |title=Invariant Variation Problems |translator=Mort Tavel |journal=Transport Theory and Statistical Physics |volume=1 |issue=3 |pages=186–207 |arxiv=physics/0503066 |doi=10.1080/00411457108231446 |bibcode = 1971TTSP....1..186N |s2cid=119019843 }} (Original in ''Gott. Nachr.'' 1918:235–257)
* {{Cite book | last = Olver | first = Peter |author-link=Peter J. Olver | title = Applications of Lie groupsGroups to differentialDifferential equationsEquations | publisher = [[Springer Science+Business Media |Springer-Verlag]] | edition = 2nd | series = [[Graduate Texts in Mathematics]] | volume = 107 | year = 1993 | isbn = 0-387-95000-1 }}
* {{citeCite arXiv |last1=Quigg |first1=Chris |title=Colloquium: A Century of Noether's Theorem |date=9 July 2019 |class=physics.hist-ph |eprint=1902.01989 }}
* {{citeCite journal |author1=Sardanashvily |first=G. |year=2009 |title=Gauge Conservation Laws in a General Setting: Superpotential |journal=[[International Journal of Geometric Methods in Modern Physics]] |titlevolume=Gauge conservation laws in a general setting. Superpotential6 |volumeissue=6 |pages=1047–1056 |year=2009 |arxiv=0906.1732 |bibcode = 2009arXiv0906.1732S |doi=10.1142/S0219887809003862|issue=6 }}
* {{Cite book | last = Sardanashvily | first = G. | author-link=Gennadi Sardanashvily |year=2016 |title = Noether's Theorems.: Applications in Mechanics and Field Theory | publisher = [[Springer Science+Business Media |Springer-Verlag]] | year = 2016 | isbn = 978-94-6239-171-0 }}
 
==External links==
* [http://www.mathpages.com/home/kmath564/kmath564.htm Noether's Theorem] at MathPages.<!-- Previously a referenced note; reference is lost, but we can assume this is still a valid citation -->
* {{cite web |author1=Emmy Noether |year=1918 |title=Invariante Variationsprobleme |language=de |url=http://de.wikisource.org/wiki/Invariante_Variationsprobleme }}
* {{cite journal |author1=Emmy Noether |translator=Mort Tavel |year=1971 |title=Invariant Variation Problems |journal=Transport Theory and Statistical Physics |volume=1 |issue=3 |pages=186–207 |arxiv=physics/0503066 |doi=10.1080/00411457108231446 |bibcode = 1971TTSP....1..186N |s2cid=119019843 }} (Original in ''Gott. Nachr.'' 1918:235–257)
*{{cite arXiv |eprint=physics/9807044 |first=Nina |last=Byers|title=E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws |year=1998}}
* {{cite web |last1=Baez |first1=John |author-link1=John Baez |title=Noether's Theorem in a Nutshell |url=http://math.ucr.edu/home/baez/noether.html |website=math.ucr.edu |access-date=28 August 2020 |date=2002}}
*{{cite journal |author1=Vladimir Cuesta |author2=Merced Montesinos |author3=José David Vergara |title=Gauge invariance of the action principle for gauge systems with noncanonical symplectic structures |journal=Physical Review D |volume=76 |pages=025025 |year=2007 |issue=2 |doi=10.1103/PhysRevD.76.025025 |bibcode = 2007PhRvD..76b5025C }}
*{{cite journal |author1=Hanca, J. |author2=Tulejab, S. |author3=Hancova, M. |title=Symmetries and conservation laws: Consequences of Noether's theorem |journal=American Journal of Physics |volume=72 |issue=4 |pages=428–35 |year=2004 |doi= 10.1119/1.1591764|url=http://www.eftaylor.com/pub/symmetry.html|bibcode = 2004AmJPh..72..428H }}
* {{cite arXiv |last1=Leone |first1=Raphaël |title=On the wonderfulness of Noether's theorems, 100 years later, and Routh reduction |date=11 April 2018|class=physics.hist-ph |eprint=1804.01714 }}
*[http://www.mathpages.com/home/kmath564/kmath564.htm Noether's Theorem] at MathPages.<!-- Previously a referenced note; reference is lost, but we can assume this is still a valid citation -->
*{{cite journal |author1=Merced Montesinos |author2=Ernesto Flores |journal=Revista Mexicana de Física |title=Symmetric energy–momentum tensor in Maxwell, Yang–Mills, and Proca theories obtained using only Noether's theorem |volume=52 |pages=29–36 |year=2006 |issue=1 |url=http://rmf.smf.mx/pdf/rmf/52/1/52_1_29.pdf |arxiv=hep-th/0602190 |bibcode=2006RMxF...52...29M |access-date=2014-11-12 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304023543/http://rmf.smf.mx/pdf/rmf/52/1/52_1_29.pdf |url-status=dead }}
* {{cite book | last1 = Neuenschwander | first1 = Dwight E. | title = Emmy Noether's Wonderful Theorem | publisher = Johns Hopkins University Press | year = 2010 | isbn = 978-0-8018-9694-1}}
* {{cite arXiv |last1=Quigg |first1=Chris |title=Colloquium: A Century of Noether's Theorem |date=9 July 2019|class=physics.hist-ph |eprint=1902.01989 }}
*{{cite journal|author1=Sardanashvily|journal=[[International Journal of Geometric Methods in Modern Physics]]|title=Gauge conservation laws in a general setting. Superpotential |volume=6 |pages=1047–1056 |year=2009 |arxiv=0906.1732|bibcode = 2009arXiv0906.1732S|doi=10.1142/S0219887809003862|issue=6 }}
 
<!-- Categories -->
[[Category:Articles containing proofs]]
[[Category:Calculus of variations]]