Content deleted Content added
→History: Rephrase for clarity |
m →External links: HTTP to HTTPS for Cornell University |
||
(16 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Short description|Field theory theorem}}
In [[field theory (mathematics)|field theory]], the '''primitive element theorem''' states that every [[degree of a field extension|finite]] [[separable extension|separable]] [[field extension]] is [[Simple extension|simple]], i.e. generated by a single element. This theorem implies in particular that all [[Algebraic number field|algebraic number fields]] over the rational numbers, and all extensions in which both fields are finite, are simple.
== Terminology ==
Let <math>E/F</math> be a ''[[field extension]]''. An element <math>\alpha\in E</math> is a ''primitive element'' for <math>E/F</math> if <math>E=F(\alpha),</math> i.e. if every element of <math>E</math> can be written as a [[rational function]] in <math>\alpha</math> with coefficients in <math>F</math>. If there exists such a primitive element, then <math>E/F</math> is referred to as a ''[[simple extension]]''.
If the field extension <math>E/F</math> has primitive element <math>\alpha</math> and is of finite [[Degree of a field extension|degree]] <math>n = [E:F]</math>, then every element
:<math>
:<math>\{1,\alpha,\ldots,{\alpha}^{n-1}\}</math>
is a [[Basis (linear algebra)|basis]] for ''E'' as a [[vector space]] over ''F''. The degree ''n'' is equal to the degree of the [[irreducible polynomial]] of ''α'' over ''F'', the unique monic <math>f(X)\in F[X] </math> of minimal degree with ''α'' as a root (a linear dependency of <math>\{1,\alpha,\ldots,\alpha^{n-1},\alpha^n\} </math>).
If ''L'' is a [[splitting field]] of <math>f(X)</math> containing its ''n'' distinct roots <math>\alpha_1,\ldots,\alpha_n </math>, then there are ''n'' [[Homomorphism|field embeddings]] <math>\sigma_i : F(\alpha)\hookrightarrow L </math> defined by <math>\sigma_i(\alpha)=\alpha_i </math> and <math>\sigma(a)=a </math> for <math>a\in F </math>, and these extend to automorphisms of ''L'' in the [[Galois group]], <math>\sigma_1,\ldots,\sigma_n\in \mathrm{Gal}(L/F) </math>. Indeed, for an extension field with <math>[E: F]=n </math>, an element <math>\alpha</math> is a primitive element if and only if <math>\alpha</math> has ''n'' distinct conjugates <math>\sigma_1(\alpha),\ldots,\sigma_n(\alpha)</math> in some splitting field <math>L \supseteq E</math>.
== Example ==
If one adjoins to the [[rational number]]s <math>F = \mathbb{Q}</math> the two irrational numbers <math>\sqrt{2}</math> and <math>\sqrt{3}</math> to get the extension field <math>E=\mathbb{Q}(\sqrt{2},\sqrt{3})</math> of
:<math>\mathbb{Q}(\sqrt 2, \sqrt 3)=\mathbb{Q}(\sqrt2 + \sqrt3).</math>
One may also use the following more general argument.<ref>{{Cite book |last=Lang |first=Serge |url=http://link.springer.com/10.1007/978-1-4613-0041-0 |title=Algebra |date=2002 |publisher=Springer New York |isbn=978-1-4612-6551-1 |series=Graduate Texts in Mathematics |volume=211 |___location=New York, NY |pages=243 |doi=10.1007/978-1-4613-0041-0}}</ref> The field <math>E=\Q(\sqrt 2,\sqrt 3) </math> clearly has four field automorphisms <math>\sigma_1,\sigma_2,\sigma_3,\sigma_4: E\to E </math> defined by <math>\sigma_i(\sqrt 2)=\pm\sqrt 2 </math> and <math>\sigma_i(\sqrt 3)=\pm\sqrt 3 </math> for each choice of signs. The minimal polynomial <math>f(X)\in\Q[X] </math> of <math>\alpha=\sqrt 2+\sqrt 3 </math> must have <math>f(\sigma_i(\alpha)) = \sigma_i(f(\alpha)) = 0 </math>, so <math>f(X) </math> must have at least four distinct roots <math>\sigma_i(\alpha)=\pm\sqrt 2 \pm\sqrt 3 </math>. Thus <math>f(X) </math> has degree at least four, and <math>[\Q(\alpha):\Q]\geq 4 </math>, but this is the degree of the entire field, <math>[E:\Q]=4 </math>, so <math>E = \Q(\alpha ) </math>.
== Theorem statement ==
Line 29 ⟶ 33:
For a non-separable extension <math>E/F</math> of [[characteristic p]], there is nevertheless a primitive element provided the degree [''E'' : ''F''] is ''p:'' indeed, there can be no non-trivial intermediate subfields since their degrees would be factors of the prime ''p''.
When [''E'' : ''F''] = ''p''<sup>2</sup>, there may not be a primitive element (in which case there are infinitely many intermediate fields by [[Steinitz's theorem (field theory)|Steinitz's theorem]]). The simplest example is <math>E=\mathbb{F}_p(T,U)</math>, the field of rational functions in two indeterminates ''T'' and ''U'' over the [[finite field]] with ''p'' elements, and <math>F=\mathbb{F}_p(T^p,U^p)</math>. In fact, for any
== Proof ==
Suppose first that <math>F</math> is infinite.
:<math>\
Since there are only finitely many possibilities for <math>\sigma(\beta)=\beta'</math>
For the case where <math>F</math> is finite, we simply
== History ==
In his First Memoir of 1831, published in 1846,<ref>{{Cite book|last=Neumann|first=Peter M.
The primitive element theorem was proved in its modern form by [[Ernst Steinitz]], in an influential article on [[Field theory (mathematics)|field theory]] in 1910, which also contains [[Steinitz's theorem (field theory)|Steinitz's theorem]];<ref name=":0">{{Cite journal|last=Steinitz|first=Ernst|date=1910|title=Algebraische Theorie der Körper.|url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0137?tify=%7B%22view%22:%22info%22,%22pages%22:%5B171%5D%7D|journal=Journal für die reine und angewandte Mathematik|language=de|volume=1910|issue=137 |pages=167–309|doi=10.1515/crll.1910.137.167|s2cid=120807300 |issn=1435-5345|url-access=subscription}}</ref> Steinitz called the "classical" [[Emil Artin]] reformulated Galois theory in the 1930s without relying on primitive elements.<ref>{{cite book|last=Kleiner|first=Israel|title=A History of Abstract Algebra|date=2007|publisher=Springer|isbn=978-0-8176-4685-1|pages=64|chapter=§4.1 Galois theory|chapter-url=https://books.google.com/books?id=udj-1UuaOiIC&pg=PA64}}</ref><ref>{{Cite book|last=Artin|first=Emil ==References==
Line 48 ⟶ 56:
* [http://www.mathreference.com/fld-sep,pet.html The primitive element theorem at mathreference.com]
* [http://planetmath.org/ProofOfPrimitiveElementTheorem The primitive element theorem at planetmath.org]
* [
[[Category:Field (mathematics)]]
|