Self-reconfiguring modular robot: Difference between revisions

Content deleted Content added
top: +{{External links}}
Bender the Bot (talk | contribs)
 
(8 intermediate revisions by 2 users not shown)
Line 1:
{{Short description|Robot that can rearrange its own parts}}
{{See also|Modular design}}
{{more citations needed|date=February 2010}}
Line 357 ⟶ 358:
|Elara, Prathap, Hayat, Parween (SUTD, Singapore)
|2019
|-
| [https://ieeexplore.ieee.org/abstract/document/9738480 Soft Lattice Modules]
| Lattice, Soft Modular 3D
| Zhao et al., (Dartmouth)
| 2022
|-
| [https://ieeexplore.ieee.org/abstract/document/10146508 StarBlocks]
| Hybrid, Deformable 3D
| Zhao et al., (Dartmouth)
| 2023
|-
|AuxBots <ref>Lillian Chin; Max Burns; Gregory Xie; Daniela Rus. "[https://ieeexplore.ieee.org/document/9976216 Flipper-Style Locomotion Through Strong Expanding Modular Robots]" in IEEE Robotics and Automation Letters ( Volume: 8, Issue: 2, Page(s): 528 - 535, February 2023)</ref>
 
|Chain, 3D
|Chin, Burns, Xie, Rus (MIT, USA)
|2023
|-
| [https://www.nature.com/articles/s41467-025-60982-0 Tensegrity-Blocks]
| Hybrid, Tensegrity Modular 3D
| Zhao, Jiang, Chen, Bekris, Balkcom, (Dartmouth)
| 2025
|-
|}
Line 386 ⟶ 401:
 
Three large scale prototypes were built in attempt to demonstrate dynamically programmable three-dimensional stochastic reconfiguration in a neutral-buoyancy environment. The first prototype used electromagnets for module reconfiguration and interconnection. The modules were 100&nbsp;mm cubes and weighed 0.81&nbsp;kg. The second prototype used stochastic fluidic reconfiguration and interconnection mechanism. Its 130&nbsp;mm cubic modules weighed 1.78&nbsp;kg each and made reconfiguration experiments excessively slow. The current third implementation inherits the fluidic reconfiguration principle. The lattice grid size is 80&nbsp;mm, and the reconfiguration experiments are under way.<ref>
[httphttps://creativemachines.cornell.edu/ the Cornell Creative Machines Lab (CCSL)]
[httphttps://creativemachines.cornell.edu/stochastic_modular_robotics Stochastic Modular Robotics].
</ref>