Content deleted Content added
Adding short description: "Robot that can rearrange its own parts" |
m →Some current systems: HTTP to HTTPS for Cornell University |
||
(7 intermediate revisions by one other user not shown) | |||
Line 358:
|Elara, Prathap, Hayat, Parween (SUTD, Singapore)
|2019
|-
| [https://ieeexplore.ieee.org/abstract/document/9738480 Soft Lattice Modules]
| Lattice, Soft Modular 3D
| Zhao et al., (Dartmouth)
| 2022
|-
| [https://ieeexplore.ieee.org/abstract/document/10146508 StarBlocks]
| Hybrid, Deformable 3D
| Zhao et al., (Dartmouth)
| 2023
|-
|AuxBots <ref>Lillian Chin; Max Burns; Gregory Xie; Daniela Rus. "[https://ieeexplore.ieee.org/document/9976216 Flipper-Style Locomotion Through Strong Expanding Modular Robots]" in IEEE Robotics and Automation Letters ( Volume: 8, Issue: 2, Page(s): 528 - 535, February 2023)</ref>
|Chain, 3D
|Chin, Burns, Xie, Rus (MIT, USA)
|2023
|-
| [https://www.nature.com/articles/s41467-025-60982-0 Tensegrity-Blocks]
| Hybrid, Tensegrity Modular 3D
| Zhao, Jiang, Chen, Bekris, Balkcom, (Dartmouth)
| 2025
|-
|}
Line 387 ⟶ 401:
Three large scale prototypes were built in attempt to demonstrate dynamically programmable three-dimensional stochastic reconfiguration in a neutral-buoyancy environment. The first prototype used electromagnets for module reconfiguration and interconnection. The modules were 100 mm cubes and weighed 0.81 kg. The second prototype used stochastic fluidic reconfiguration and interconnection mechanism. Its 130 mm cubic modules weighed 1.78 kg each and made reconfiguration experiments excessively slow. The current third implementation inherits the fluidic reconfiguration principle. The lattice grid size is 80 mm, and the reconfiguration experiments are under way.<ref>
[
[
</ref>
|