Permutation pattern: Difference between revisions

Content deleted Content added
m Closed classes: terminology
 
(6 intermediate revisions by 2 users not shown)
Line 1:
{{Short description|Subpermutation of a longer permutation}}
In [[combinatorics|combinatorial mathematics]] and [[theoretical computer science]], a (classical) '''permutation pattern''' is a sub-permutation of a longer [[permutation]]. Any permutation may be written in [[Permutation#One-line_notation|one-line notation]] as a sequence of entries representing the result of applying the permutation to the sequence 123...; for instance the sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number [[pi]]), then π is said to ''contain'' σ as a ''pattern'' if some [[subsequence]] of the entries of π has the same relative order as all of the entries of σ.
 
Line 6 ⟶ 7:
 
If a permutation π does not contain a pattern σ, then π is said to ''avoid'' σ. The permutation 51342 avoids 213; it has ten subsequences of three entries, but none of these ten subsequences has the same ordering as 213.
 
An international conference dedicated to permutation patterns and related topics has been held annually since 2003, called ''[[Permutation Patterns (conference) | Permutation Patterns]]''.
 
== Early results ==
Line 53 ⟶ 56:
}}.</ref> Since their paper, many other bijections have been given, see {{harvtxt|Claesson|Kitaev|2008}} for a survey.<ref>{{Citation| last1=Claesson | first1=Anders| last2=Kitaev | first2=Sergey| author2-link = Sergey Kitaev| arxiv = 0805.1325| title=Classification of bijections between 321- and 132-avoiding permutations| year=2008| journal=[[Séminaire Lotharingien de Combinatoire]]| url = https://www.mat.univie.ac.at/~slc/wpapers/s60claekit.html| volume=60| pages=B60d, 30pp| mr = 2465405}}.</ref>
 
In general, if |Av''<sub>n</sub>''(''β'')| = |Av''<sub>n</sub>''(''σ'')| for all ''n'', then ''β'' and ''σ'' are said to be [[Wilf equivalence|''Wilf-equivalent'']]. Many Wilf-equivalences stem from the trivial fact that |Av''<sub>n</sub>''(''β'')| = |Av''<sub>n</sub>''(''β''<sup>&minus;1</sup>)| = |Av''<sub>n</sub>''(''β''<sup>rev</sup>)| for all ''n'', where ''β''<sup>&minus;1</sup> denotes the [[Permutation#Product and inverse|inverse]] of ''β'' and ''β''<sup>rev</sup> denotes the reverse of ''β''. (These two operations generate the [[Examples of groups#The symmetry group of a square - dihedral group of order 8|Dihedral group D<sub>8</sub>]] with a natural action on [[permutation matrices]].) However, there are also numerous examples of nontrivial Wilf-equivalences (such as that between ''123'' and ''231''):
 
* {{harvtxt|Stankova|1994}} proved that the permutations 1342 and 2413 are Wilf-equivalent.<ref>{{Citation | last1=Stankova | first1=Zvezdelina | title=Forbidden subsequences | mr = 1297387 | year=1994 | journal=[[Discrete Mathematics (journal)|Discrete Mathematics]] | volume=132 | issue=1–3 | pages=291–316 | doi = 10.1016/0012-365X(94)90242-9| doi-access=free }}.</ref>
* {{harvtxt|Stankova|West|2002}} proved that for any permutation ''β'', the permutations 231 &oplus; ''β'' and 312 &oplus; ''β'' are Wilf-equivalent, where &oplus; denotes the [[direct sum of permutations|direct sum]] operation.<ref>{{Citation | last1=Stankova | first1=Zvezdelina | last2=West | first2=Julian | title=A New class of Wilf-Equivalent Permutations | mr = 1900628 | year=2002 | journal=[[Journal of Algebraic Combinatorics]] | volume=15 | issue=3 | pages=271–290 | doi = 10.1023/A:1015016625432| arxiv=math/0103152 | s2cid=13921676 }}.</ref>
* {{harvtxt|Backelin|West|Xin|2007}} proved that for any permutation ''β'' and any positive integer ''m'', the permutations 12...''m'' &oplus; ''β'' and ''m''...21&nbsp;&oplus;&nbsp;''β'' are Wilf-equivalent.<ref>{{citation | last1=Backelin | first1=Jörgen | last2=West | first2=Julian | last3=Xin | first3=Guoce | title=Wilf-equivalence for singleton classes
| mr = 2290807 | year=2007 | journal=[[Advances in Applied Mathematics]] | volume=38 | issue=2 | pages=133–149 | doi = 10.1016/j.aam.2004.11.006| doi-access=free }}.</ref>
 
Line 82 ⟶ 85:
As the set of permutations under the containment order forms a [[Partially ordered set|poset]] it is natural to ask about its [[incidence algebra#Special elements|Möbius function]], a goal first explicitly presented by {{harvtxt|Wilf|2002}}.<ref>{{citation | last1=Wilf | first1=Herbert | authorlink = Herbert Wilf |title=Patterns of permutations | mr = 1935750 | year=2002 | journal=[[Discrete Mathematics (journal)|Discrete Mathematics]]| volume=257 | issue=2 | pages=575–583 | doi = 10.1016/S0012-365X(02)00515-0| doi-access=free }}.</ref>
The goal in such investigations is to find a formula for the Möbius function of an interval [σ, π] in the permutation pattern poset which is more efficient than the naïve recursive definition. The first such result was established by {{harvtxt|Sagan|Vatter|2006}}, who gave a formula for the Möbius function of an interval of [[layered permutation]]s.<ref>{{Citation | last1=Sagan | first1=Bruce | author1-link=Bruce Sagan | last2=Vatter | first2= Vince | title=The Möbius function of a composition poset | mr = 2259013 | year=2006 | journal=[[Journal of Algebraic Combinatorics]] | volume=24 | issue=2 | pages=117–136 | doi=10.1007/s10801-006-0017-4| arxiv=math/0507485 | s2cid=11283347 }}.</ref>
Later, {{harvtxt|Burstein|Jelinek|Jelinkova|Steingrimsson|2011}} generalized this result to intervals of [[separable permutation]]s.<ref>{{Citation | last1=Burstein | first1=Alexander | last2=Jelinek | first2= Vit | last3=Jelinkova | first3=Eva | last4=Steingrimsson | first4= Einar |author4-link=Einar Steingrímsson|title=The Möbius function of separable and decomposable permutations | mr = 2834180 | year=2011 | journal=[[Journal of Combinatorial Theory]]|series=Series A | volume=118 | issue=1 | pages=2346–2364 | doi=10.1016/j.jcta.2011.06.002| s2cid=13978488 | doi-access=free }}.</ref>
 
It is known that, asymptotically, at least 39.95% of all permutations π of length ''n'' satisfy μ(1, π)=0 (that is, the principal Möbius function is equal to zero),<ref>{{citation |last1=Brignall |first1=Robert |last2=Jelínek |first2=Vit |last3=Kynčl |first3=Jan |last4=Marchant |first4=David |title=Zeros of the Möbius function of permutations | year=2019 | journal=[[Mathematika]] |volume=65 |issue=4 |pages=1074–1092 | mr=3992365 | doi=10.1112/S0025579319000251|s2cid=53366318 |url=http://oro.open.ac.uk/66369/1/181012-Marchant-v101.pdf |arxiv=1810.05449 }}</ref> but for each ''n'' there exist permutations π such that μ(1, π) is an exponential function of ''n''.<ref>{{citation |last1=Marchant |first1=David |title=2413-balloon permutations and the growth of the Möbius function |journal=[[Electronic Journal of Combinatorics]] |date=2020 |volume=27 |issue=1 |page=Article P1.7, 18 pp |doi=10.37236/8554|doi-access=free |arxiv=1812.05064 }}</ref>
Line 118 ⟶ 121:
| &nbsp;1243&nbsp; || {{math|1={{sfrac|3|8}} = 0.375}} || {{harvtxt|Albert|Atkinson|Handley|Holton|2002}}<ref>{{Citation
| last1=Albert | first1=Michael H. | author1-link=Michael H. Albert
| last2=Atkinson | first2=M. D. | author2-link=Michael D. Atkinson
| last3=Handley | first3=C. C.
| last4=Holton | first4=D. A.
Line 206 ⟶ 209:
| last1=Babson | first1=Erik
| last2= Steingrímsson | first2=Einar
| author2-link = Einar Steingrímsson
| title=Generalized permutation patterns and a classification of the Mahonian statistics
| year=2000
Line 230 ⟶ 234:
==External links==
{{Commonscat|Permutation patterns}}
A conference on permutation patterns has been [https://permutationpatterns.com/history/ held annually since 2003]:
# [http://www.cs.otago.ac.nz/conferences/PP2003/ Permutation Patterns 2003], February 10–14, 2003, [[University of Otago]], Dunedin, New Zealand.
# [https://web.archive.org/web/20041102100037/http://www.mala.ca/math/pp Permutation Patterns 2004], July 5–9, 2004, [[Malaspina University-College]], Nanaimo, British Columbia, Canada.
# [http://math.haifa.ac.il/toufik/conf_2005/pp05.html Permutation Patterns 2005], March 7–11, 2005, [[University of Florida]], Gainesville, Florida, USA.
# [http://www.cs.otago.ac.nz/staffpriv/mike/PP2006/Home.html Permutation Patterns 2006], June 12–16, 2006, [[Reykjavík University]], Reykjavík, Iceland.
# [http://turnbull.mcs.st-and.ac.uk/~pp2007/ Permutation Patterns 2007], June 11–15, 2007, [[University of St. Andrews]], St. Andrews, Scotland.
# [http://www.cs.otago.ac.nz/staffpriv/mike/PP2008/ Permutation Patterns 2008], June 16–20, 2008, [[University of Otago]], Dunedin, New Zealand.
# [http://www.dsi.unifi.it/~PP2009/ Permutation Patterns 2009], July 13–17, 2009, [[Università di Firenze]], Florence, Italy.
# [http://math.dartmouth.edu/~pp2010/ Permutation Patterns 2010], August 9–13, 2010, [[Dartmouth College]], Hanover, New Hampshire, USA.
# [https://web.archive.org/web/20110820182310/http://math.calpoly.edu/PP2011 Permutation Patterns 2011], June 20–24, 2011, [[California Polytechnic State University]], San Luis Obispo, California, USA.
# [http://combinatorics.cis.strath.ac.uk/pp2012/ Permutation Patterns 2012], June 11–15, 2012, [[University of Strathclyde]], Glasgow, Scotland.
# [http://www.lix.polytechnique.fr/pp2013/ Permutation Patterns 2013], July 1–5, 2013, [[Université Paris Diderot]], Paris, France.
# [http://www.etsu.edu/cas/math/pp2014/ Permutation Patterns 2014], July 7–11, 2014, [[East Tennessee State University]], Johnson City, Tennessee, USA.
# [https://sites.google.com/site/pp2015london/ Permutation Patterns 2015], June 15–19, 2015, [http://demorganhouse.org.uk/ De Morgan House], London, England.
# [https://permutationpatterns2016.wordpress.com/ Permutation Patterns 2016], June 27–July 1, 2016, [[Howard University]], Washington, DC, USA.
# [https://pp2017.github.io/ Permutation Patterns 2017], June 26–30, 2017, [[Reykjavík University]], Reykjavík, Iceland.
# [http://2018.permutationpatterns.com/ Permutation Patterns 2018], July 9–13, 2018, [[Dartmouth College]], Hanover, New Hampshire, USA.
# [https://sites.google.com/view/permutation-patterns-2019/ Permutation Patterns 2019], June 17–21, 2019, [[Universität Zürich]], Zürich, Switzerland.
# [https://permutationpatterns.com/2020-virtual-workshop/ Permutation Patterns 2020 Virtual Workshop], June 30–July 1, 2020, hosted by [[Valparaiso University]], Valparaiso, Indiana, USA.
# [http://combinatorics.cis.strath.ac.uk/pp2021/ Permutation Patterns 2021 Virtual Workshop], June 15–16, 2021, hosted by [[University of Strathclyde]], Glasgow, Scotland.
# [https://www.valpo.edu/mathematics-statistics/permutation-patterns-2022/ Permutation Patterns 2022], June 20-24, 2022, [[Valparaiso University]], Valparaiso, Indiana, USA.
# [https://2023.permutationpatterns.com/ Permutation Patterns 2023], July 3-7, 2023, [[University of Burgundy]], Dijon, France.
 
[[American Mathematical Society]] Special Sessions on Patterns in Permutations have been held at the following meetings:
* [https://www.ams.org/meetings/sectional/2198_program_ss19.html Fall Eastern Sectional Meeting], September 22–23, 2012, [[Rochester Institute of Technology]], Rochester, NY.
* [http://jointmathematicsmeetings.org/meetings/national/jmm2013/2141_program_ss35.html Joint Mathematics Meetings], January 12, 2013, San Diego, CA.
* [https://www.ams.org/meetings/sectional/2212_program_ss15.html Central Fall Sectional Meeting], September 20–21, 2014, [[University of Wisconsin-Eau Claire]], Eau Claire, WI.
* [https://www.ams.org/meetings/sectional/2225_program_ss30.html Spring Eastern Sectional Meeting], March 7–8, 2015, [[Georgetown University]], Washington, DC.
 
Other permutation patterns meetings:
* [http://math.haifa.ac.il/toufik/conf_work05/work2004.html Workshop on Permutation Patterns], May 29–June 3, 2005, [[University of Haifa]], Haifa, Israel.
* [https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=16071 Pattern Avoidance and Genome Sorting], February 14-19, 2016, [[Schloss Dagstuhl]], Wadern, Germany.
* [https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18451 Genomics, Pattern Avoidance, and Statistical Mechanics], November 4-9, 2018, [[Schloss Dagstuhl]], Wadern, Germany.
* [https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=23121 Pattern Avoidance, Statistical Mechanics and Computational Complexity], March 19-24, 2023, [[Schloss Dagstuhl]], Wadern, Germany.
 
Other links:
* [https://www.cs.otago.ac.nz/staffpriv/malbert/permlab.php PermLab: software for permutation patterns], maintained by [[Michael H. Albert|Michael Albert]].
* [http://math.depaul.edu/~bridget/patterns.html Database of Permutation Pattern Avoidance], maintained by [[Bridget Tenner]].