Shell theorem: Difference between revisions

Content deleted Content added
AstroFloyd (talk | contribs)
m Spherical shell to solid sphere: Use text for non-variable subscripts.
Link suggestions feature: 2 links added.
 
Line 17:
The gravitational field <math>E</math> at a position called <math>P</math> at <math>(x,y) = (-p,0)</math> on the ''x''-axis due to a point of mass <math>M</math> at the origin is <math display="block">E_\text{point} = \frac{GM}{p^2}</math>
[[File:Point2.png|frameless|300x300px]]
Suppose that this mass is moved upwards along the ''y''-axis to the point {{nowrap|<math>(0,R)</math>.}} The distance between <math>P</math> and the point mass is now longer than before; It becomes the [[hypotenuse]] of the right triangle with legs <math>p</math> and <math>R</math> which is {{nowrap|<math display="inline">\sqrt{p^2 + R^2}</math>.}} Hence, the gravitational field of the elevated point is:
<math display="block">E_\text{elevated point} = \frac{GM}{p^2+R^2}</math>
[[File:Pointy2.png|frameless|270x270px]]
Line 224:
=== Introduction ===
 
Propositions 70 and 71 consider the force acting on a particle from a hollow sphere with an infinitesimally thin surface, whose mass density is constant over the surface. The force on the particle from a small area of the surface of the sphere is proportional to the mass of the area and inversely as the square of its distance from the particle. The first proposition considers the case when the particle is inside the sphere, the second when it is outside. The use of infinitesimals and limiting processes in geometrical constructions are simple and elegant and avoid the need for any integrations. They well illustrate [[Newton's method]] of proving many of the propositions in the ''Principia''.
 
His proof of Propositions 70 is trivial. In the following, it is considered in slightly greater detail than Newton provides.