Content deleted Content added
Cleaning up accepted Articles for creation submission (AFCH 0.9.1) |
Undid revision 1306141408 by 2601:1C0:5780:8D40:D04C:4026:7A75:7E14 (talk) Gamma(5) is 4 factorial and is definitely 24 |
||
(31 intermediate revisions by 19 users not shown) | |||
Line 1:
{{Short description|Inverse of the gamma function}}
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
{{multiple image
| total_width = 500
| caption1 = Graph of an inverse gamma function
| image2 = Inverse gamma function in complex plane.png
| caption2 = Plot of inverse gamma function in the complex plane
}}
In [[mathematics]], the '''inverse gamma function''' <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words,
|jstor=41505586 |s2cid=85549521 |doi-access
▲[[File:Inverse Gamma Function.png|thumb]]
▲==== Definition ====
The inverse gamma function may be defined by the following integral representation<ref>{{cite journal |last1=Pedersen |first1=Henrik |title="Inverses of gamma functions" |journal=Constructive Approximation |date=9 September 2013 |volume=7 |issue=2 |pages=251–267 |doi=10.1007/s00365-014-9239-1 |arxiv=1309.2167 |s2cid=253898042 |url=https://link.springer.com/article/10.1007/s00365-014-9239-1}}</ref>
<math display="block">\Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t)
▲Where <math>\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty</math>, and a and b are real numbers with <math>b\geqq0</math>, and <math>\mu (t)</math> is the [[Borel measure|Borel Meausure]].
To compute the branches of the inverse gamma function
<math display="block"> \Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\psi^{\left(1 \right)}\left(\alpha \right)\Gamma\left(\alpha\right)}}.</math>
▲==== Approximation ====
▲To compute the branches of the inverse gamma function one can first compute the Taylor series of <math>\Gamma(x)</math> near <math>\alpha</math>. The series can then be truncated and inverted, which yields successively better approximations to <math>\Gamma^{-1}(x)</math>. For instance, we have the quadratic approximation:<ref>{{cite journal |first1=Robert M.|last1=Corless |first2=Folitse Komla|last2=Amenyou |last3=Jeffrey |first3=David |title=Properties and Computation of the Functional Inverse of Gamma |journal=SYNASC |date=2017 |pages=65 |doi=10.1109/SYNASC.2017.00020|isbn=978-1-5386-2626-9 |s2cid=53287687 }}</ref>
where <math> \psi^{\left(1 \right)} \left(x \right)</math> is the [[trigamma function]]. The inverse gamma function also has the following [[asymptotic formula]]<ref>{{cite thesis |type=MS |last1=Amenyou |first1=Folitse Komla |last2=Jeffrey |first2=David |title="Properties and Computation of the inverse of the Gamma Function" |date=2018 |pages=28 |url=https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=7340&context=etd}}</ref>▼
<math display="block"> \Gamma^{-1}
▲The inverse gamma function also has the following [[asymptotic formula]]<ref>{{cite thesis |type=MS |last1=Amenyou |first1=Folitse Komla |last2=Jeffrey |first2=David |title="Properties and Computation of the inverse of the Gamma Function" |date=2018 |pages=28 |url=https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=7340&context=etd}}</ref>
▲Where <math>W_0(x)</math> is the [[Lambert W function]]. The formula is found by inverting the [[Stirling's approximation|Stirling approximation]], and so can also be expanded into an asymptotic series.
=== Series expansion ===
To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the [[reciprocal gamma function]] <math>\frac{1}{\Gamma(x)}</math> near the poles at the negative integers, and then invert the series.
Setting <math>z=\frac{1}{x}</math> then yields, for the ''n'' th branch <math>\Gamma_{n}^{-1}(z)</math> of the inverse gamma function (<math>n\ge 0</math>)
<math display="block"> \Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)\,,</math>▼
== References ==▼
▲<math>\Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)</math>
{{reflist}}▼
[[Category:Gamma and related functions]]
▲Where <math>\psi^{(n)}(x)</math> is the [[polygamma function]].
▲== References ==
{{mathematics-stub}}
▲{{reflist}}
|