Content deleted Content added
No edit summary |
Undid revision 1306141408 by 2601:1C0:5780:8D40:D04C:4026:7A75:7E14 (talk) Gamma(5) is 4 factorial and is definitely 24 |
||
(15 intermediate revisions by 13 users not shown) | |||
Line 1:
{{Short description|Inverse of the gamma function}}
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
{{multiple image
| total_width = 500
In [[mathematics]], the '''inverse gamma function''' <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, <math>y = \Gamma^{-1}(x)</math> whenever <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math>.<ref>{{Cite journal |last1=Borwein |first1= Jonathan M. |last2=Corless |first2= Robert M.|title=Gamma and Factorial in the Monthly |journal=The American Mathematical Monthly |year=2017 |volume= 125 |issue= 5 |pages= 400–424 |doi= 10.1080/00029890.2018.1420983 |arxiv=1703.05349 |jstor=48663320|s2cid= 119324101 }}</ref> Usually, the inverse gamma function refers to the principal branch with ___domain on the real interval <math>\left[\beta, +\infty\right)</math> and image on the real interval <math>\left[\alpha, +\infty\right)</math>, where <math>\beta = 0.8856031\ldots</math><ref>{{oeis|A030171}}</ref> is the minimum value of the gamma function on the positive real axis and <math>\alpha = \Gamma^{-1}(\beta) = 1.4616321\ldots</math><ref>{{oeis|A030169}}</ref> is the ___location of that minimum.<ref>{{cite journal |last1=Uchiyama |first1=Mitsuru |title=The principal inverse of the gamma function |date=April 2012 |url= https://www.jstor.org/stable/41505586 |journal=Proceedings of the American Mathematical Society|volume=140 |issue=4 |pages=1347 |doi= 10.1090/S0002-9939-2011-11023-2▼
|jstor=41505586 |s2cid=85549521 |access-date=20 March 2023|doi-access=free }}</ref>▼
| caption1 = Graph of an inverse gamma function
| image2 = Inverse gamma function in complex plane.png
}}
▲In [[mathematics]], the '''inverse gamma function''' <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, <math>y = \Gamma^{-1}(x)</math> whenever <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math>.<ref>{{
▲[[File:Inverse Gamma Function.png|thumb]]
▲[[File:Inverse gamma function in complex plane.png|Plot of inverse gamma function in the complex plane |thumb]]
== Definition ==
The inverse gamma function may be defined by the following integral representation<ref>{{cite journal |last1=Pedersen |first1=Henrik |title="Inverses of gamma functions" |journal=Constructive Approximation |date=9 September 2013 |volume=7 |issue=2 |pages=251–267 |doi=10.1007/s00365-014-9239-1 |arxiv=1309.2167 |s2cid=253898042 |url=https://link.springer.com/article/10.1007/s00365-014-9239-1}}</ref>
<math display="block">\Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t)
▲Where <math>\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty</math>, and a and b are real numbers with <math>b\geqq0</math>, and <math>\mu (t)</math> is the [[Borel measure|Borel Meausure]].
== Approximation ==
To compute the branches of the inverse gamma function
<math display="block"> \Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\
▲\Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\Psi\left(1,\ \alpha\right)\Gamma\left(\alpha\right)}}.</math>
where <math> \psi^{\left(1 \right)} \left(x \right)</math> is the [[trigamma function]]. The inverse gamma function also has the following [[asymptotic formula]]<ref>{{cite thesis |type=MS |last1=Amenyou |first1=Folitse Komla |last2=Jeffrey |first2=David |title="Properties and Computation of the inverse of the Gamma Function" |date=2018 |pages=28 |url=https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=7340&context=etd}}</ref>
<math display="block"> \Gamma^{-1}(x)\sim\frac{1}{2}+\frac{\ln\left(\frac{x}{\sqrt{2\pi}}\right)}{W_{0}\left(e^{-1}\ln\left(\frac{x}{\sqrt{2\pi}}\right)\right)}\,,</math>▼
▲<math>\Gamma^{-1}(x)\sim\frac{1}{2}+\frac{\ln\left(\frac{x}{\sqrt{2\pi}}\right)}{W_{0}\left(e^{-1}\ln\left(\frac{x}{\sqrt{2\pi}}\right)\right)}</math>
▲Where <math>W_0(x)</math> is the [[Lambert W function]]. The formula is found by inverting the [[Stirling's approximation|Stirling approximation]], and so can also be expanded into an asymptotic series.
=== Series expansion ===
To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the [[reciprocal gamma function]] <math>\frac{1}{\Gamma(x)}</math> near the poles at the negative integers, and then invert the series.
Setting <math>z=\frac{1}{x}</math> then yields, for the ''n'' th branch <math>\Gamma_{n}^{-1}(z)</math> of the inverse gamma function (<math>n\ge 0</math>)
<math display="block"> \Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)\,,</math>▼
▲<math>\Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)</math>
▲Where <math>\psi^{(n)}(x)</math> is the [[polygamma function]].
== References ==
{{reflist}}
{{mathematics-stub}}▼
[[Category:Gamma and related functions]]
▲{{mathematics-stub}}
|