Inverse gamma function: Difference between revisions

Content deleted Content added
FrescoBot (talk | contribs)
m Bot: link syntax and minor changes
Undid revision 1306141408 by 2601:1C0:5780:8D40:D04C:4026:7A75:7E14 (talk) Gamma(5) is 4 factorial and is definitely 24
 
(12 intermediate revisions by 10 users not shown)
Line 1:
{{Short description|Inverse of the gamma function}}
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
{{multiple image
{{Orphan|date=July 2023}}
| total_width = 500
[[File: | image1 = Inverse Gamma Function.png|thumb]]
| caption1 = Graph of an inverse gamma function
| image2 = Inverse gamma function in complex plane.png
[[File:Inverse | gammacaption2 function= in complex plane.png|Plot of inverse gamma function in the complex plane |thumb]]
}}
 
In [[mathematics]], the '''inverse gamma function''' <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, <math>y = \Gamma^{-1}(x)</math> whenever <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math>.<ref>{{cite journal |last1=Borwein |first1= Jonathan M. |last2=Corless |first2=Robert M.|title=Gamma and Factorial in the Monthly |journal=The American Mathematical Monthly |year=2017 |volume=125 |issue=5 |pages= 400–424 |doi= 10.1080/00029890.2018.1420983 |arxiv=1703.05349 |jstor=48663320 |s2cid=119324101}}</ref> Usually, the inverse gamma function refers to the principal branch with ___domain on the real interval <math>\left[\beta, +\infty\right)</math> and image on the real interval <math>\left[\alpha, +\infty\right)</math>, where <math>\beta = 0.8856031\ldots</math><ref>{{oeis|A030171}}</ref> is the minimum value of the gamma function on the positive real axis and <math>\alpha = \Gamma^{-1}(\beta) = 1.4616321\ldots</math><ref>{{oeis|A030169}}</ref> is the ___location of that minimum.<ref>{{cite journal |last1=Uchiyama |first1=Mitsuru |title=The principal inverse of the gamma function |date=April 2012 |journal=Proceedings of the American Mathematical Society|volume=140 |issue=4 |pages=1347 |doi= 10.1090/S0002-9939-2011-11023-2
|jstor=41505586 |s2cid=85549521 |doi-access=free }}</ref>
 
[[File:Inverse Gamma Function.png|thumb]]
[[File:Inverse gamma function in complex plane.png|Plot of inverse gamma function in the complex plane |thumb]]
== Definition ==
The inverse gamma function may be defined by the following integral representation<ref>{{cite journal |last1=Pedersen |first1=Henrik |title="Inverses of gamma functions" |journal=Constructive Approximation |date=9 September 2013 |volume=7 |issue=2 |pages=251–267 |doi=10.1007/s00365-014-9239-1 |arxiv=1309.2167 |s2cid=253898042 |url=https://link.springer.com/article/10.1007/s00365-014-9239-1}}</ref>
<math display="block">\Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t) \,,</math>
Wherewhere <math>\mu (t)</math> is a [[Borel measure]] such that <math display="block">\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty \,,</math> and <math>a</math> and <math>b</math> are real numbers with <math>b \geqq 0</math>.
 
Where <math>\mu (t)</math> is a [[Borel measure]] such that <math display="block">\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty \,,</math> and <math>a</math> and <math>b</math> are real numbers with <math>b \geqq 0</math>.
 
== Approximation ==
To compute the branches of the inverse gamma function one can first compute the [[Taylor series]] of <math>\Gamma(x)</math> near <math>\alpha</math>. The series can then be truncated and inverted, which yields successively better approximations to <math>\Gamma^{-1}(x)</math>. For instance, we have the quadratic approximation:<ref>{{cite conference |first1=Robert M.|last1=Corless |first2=Folitse Komla|last2=Amenyou |last3=Jeffrey |first3=David |book-title=2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) |title=Properties and Computation of the Functional Inverse of Gamma |conference=International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) |date=2017 |pages=65 |doi=10.1109/SYNASC.2017.00020|isbn=978-1-5386-2626-9 |s2cid=53287687 }}</ref>
 
<math display="block"> \Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\Psipsi^{\left(1,\ \right)}\left(\alpha \right)\Gamma\left(\alpha\right)}}.</math>
<math>
\Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\Psi\left(1,\ \alpha\right)\Gamma\left(\alpha\right)}}.</math>
 
where <math> \psi^{\left(1 \right)} \left(x \right)</math> is the [[trigamma function]]. The inverse gamma function also has the following [[asymptotic formula]]<ref>{{cite thesis |type=MS |last1=Amenyou |first1=Folitse Komla |last2=Jeffrey |first2=David |title="Properties and Computation of the inverse of the Gamma Function" |date=2018 |pages=28 |url=https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=7340&context=etd}}</ref>
<math display="block"> \Gamma^{-1}(x)\sim\frac{1}{2}+\frac{\ln\left(\frac{x}{\sqrt{2\pi}}\right)}{W_{0}\left(e^{-1}\ln\left(\frac{x}{\sqrt{2\pi}}\right)\right)}\,,</math>
Wherewhere <math>W_0(x)</math> is the [[Lambert W function]]. The formula is found by inverting the [[Stirling's approximation|Stirling approximation]], and so can also be expanded into an asymptotic series.
<math>\Gamma^{-1}(x)\sim\frac{1}{2}+\frac{\ln\left(\frac{x}{\sqrt{2\pi}}\right)}{W_{0}\left(e^{-1}\ln\left(\frac{x}{\sqrt{2\pi}}\right)\right)}</math>
 
Where <math>W_0(x)</math> is the [[Lambert W function]]. The formula is found by inverting the [[Stirling's approximation|Stirling approximation]], and so can also be expanded into an asymptotic series.
 
'''Series Expansion'''
 
=== Series expansion ===
To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the [[reciprocal gamma function]] <math>\frac{1}{\Gamma(x)}</math> near the poles at the negative integers, and then invert the series.
 
Setting <math>z=\frac{1}{x}</math> then yields, for the ''n'' th branch <math>\Gamma_{n}^{-1}(z)</math> of the inverse gamma function (<math>n\ge 0</math>)<ref>{{Cite journal |last1=Couto |first1=Ana Carolina Camargos |last2=Jeffrey |first2=David |last3=Corless |first3=Robert |date=November 2020 |title=The Inverse Gamma Function and its Numerical Evaluation |url=https://www.maplesoft.com/mapleconference/2020/highlights.aspx |at=Section 8 |journal=Maple Conference Proceedings}}</ref>
<math display="block"> \Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)\,,</math>
 
Wherewhere <math>\psi^{(n)}(x)</math> is the [[polygamma function]].
<math>\Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)</math>
 
Where <math>\psi^{(n)}(x)</math> is the [[polygamma function]].
 
== References ==
 
{{reflist}}
{{mathematics-stub}}
 
[[Category:Gamma and related functions]]
 
 
{{Improve categories|date=July 2023}}
{{mathematics-stub}}