Content deleted Content added
Added links to nLab. |
Added principal U(1)-bundles. |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1:
{{Short description|Exact homotopy case}}
{{DISPLAYTITLE:Classifying space for U(''n'')}}
In [[mathematics]], the '''[[classifying space]] for the [[unitary group]]''' U(''n'') is a space BU(''n'') together with a universal bundle EU(''n'') such that any hermitian bundle on a [[paracompact space]] ''X'' is the pull-back of EU(''n'') by a map ''X'' → BU(''n'') unique up to homotopy. A particular application are [[Principal U(1)-bundle|principal U(1)-bundles]].
This space with its universal fibration may be constructed as either
Line 76:
== Cohomology of BU(''n'')==
: <math>H^*(\operatorname{BU}(n);\mathbb{Z})
'''Proof:''' Let us first consider the case ''n'' = 1. In this case, U(1) is the circle '''S'''<sup>1</sup> and the universal bundle is '''S'''<sup>∞</sup> → '''CP'''<sup>∞</sup>. It is well known<ref>R. Bott, L. W. Tu-- ''Differential Forms in Algebraic Topology'', Graduate Texts in Mathematics 82, Springer</ref> that the cohomology of '''CP'''<sup>''k''</sup> is isomorphic to <math>\mathbf{R}\lbrack c_1\rbrack/c_1^{k+1}</math>, where ''c''<sub>1</sub> is the [[Euler class]] of the U(1)-bundle '''S'''<sup>2''k''+1</sup> → '''CP'''<sup>''k''</sup>, and that the injections '''CP'''<sup>''k''</sup> → '''CP'''<sup>''k''+1</sup>, for ''k'' ∈ '''N'''*, are compatible with these presentations of the cohomology of the projective spaces. This proves the Proposition for ''n'' = 1.▼
=\mathbb{Z}[c_1,\ldots,c_n].</math>
▲'''Proof:''' Let us first consider the case ''n'' = 1. In this case, U(1) is the circle '''S'''<sup>1</sup> and the universal bundle is '''S'''<sup>∞</sup> → '''CP'''<sup>∞</sup>. It is well known<ref>R. Bott, L. W. Tu-- ''Differential Forms in Algebraic Topology'', Graduate Texts in Mathematics 82, Springer</ref> that the cohomology of '''CP'''<sup>''k''</sup> is isomorphic to <math>\
There are homotopy fiber sequences
Line 122 ⟶ 124:
is the [[multinomial coefficient]] and <math>k_1,\dots,k_n</math> contains ''r'' distinct integers, repeated <math>n_1,\dots,n_r</math> times, respectively.
== Infinite classifying space ==
The canonical inclusions <math>\operatorname{U}(n)\hookrightarrow\operatorname{U}(n+1)</math> induce canonical inclusions <math>\operatorname{BU}(n)\hookrightarrow\operatorname{BU}(n+1)</math> on their respective classifying spaces. Their respective colimits are denoted as:
: <math>\operatorname{U}
:=\lim_{n\rightarrow\infty}\operatorname{U}(n);</math>
: <math>\operatorname{BU}
:=\lim_{n\rightarrow\infty}\operatorname{BU}(n).</math>
<math>\operatorname{BU}</math> is indeed the classifying space of <math>\operatorname{U}</math>.
==See also==
* [[Classifying space for O(n)|Classifying space for O(''n'')]]
* [[Classifying space for SO(n)]]
* [[Classifying space for SU(n)]]
* [[Topological K-theory]]
* [[Atiyah–Jänich theorem]]
Line 166 ⟶ 180:
|publisher=American Mathematical Society
}}
*{{cite book|last=Hatcher|first=Allen|title=Algebraic topology|publisher=[[Cambridge University Press]]|___location=Cambridge|year=2002|language=en|isbn=0-521-79160-X|url=https://pi.math.cornell.edu/~hatcher/AT/ATpage.html}}
*{{cite book|title=Universal principal bundles and classifying spaces|publisher=|___location=|isbn=|url=https://math.mit.edu/~mbehrens/18.906/prin.pdf|doi=|last=Mitchell|first=Stephen|year=August 2001}}
== External links ==
|