Content deleted Content added
bold title phrase per WP:MOS |
Added principal U(1)-bundles. |
||
(48 intermediate revisions by 22 users not shown) | |||
Line 1:
{{Short description|Exact homotopy case}}
{{DISPLAYTITLE:Classifying space for U(''n'')}}
In [[mathematics]], the '''[[classifying space]] for the [[unitary group]]''' U(''n'') is a space BU(''n'') together with a universal bundle EU(''n'') such that any hermitian bundle on a [[paracompact space]] ''X'' is the pull-back of EU(''n'') by a map ''X'' → BU(''n'') unique up to homotopy. A particular application are [[Principal U(1)-bundle|principal U(1)-bundles]].
This space with its universal fibration may be constructed as either
# the [[Grassmannian]] of ''n''-planes in an infinite-dimensional complex [[Hilbert space]]; or,
# the direct limit, with the induced topology, of [[Grassmannian
Both constructions are detailed here.
==Construction
The [[total space]]
:<math>EU(n)=\left \{e_1,\ldots,e_n \ : \ (e_i,e_j)=\delta_{ij}, e_i\in
Here, ''H''
The [[Group action (mathematics)|group action]] of
:<math>BU(n)=EU(n)/U(n) </math>
and is the set of [[Grassmannian]] ''n''-dimensional subspaces (or ''n''-planes) in ''H''. That is,
:<math>BU(n) = \{ V \subset
so that ''V'' is an ''n''-dimensional vector space.
=== Case of line bundles ===
For ''n'' = 1, one has EU(1) = '''S'''<sup>∞</sup>, which is [[Contractibility of unit sphere in Hilbert space|known to be a contractible space]]. The base space is then BU(1) = '''CP'''<sup>∞</sup>, the infinite-dimensional [[complex projective space]]. Thus, the set of [[isomorphism class]]es of [[circle bundle]]s over a [[manifold]] ''M'' are in one-to-one correspondence with the [[homotopy class]]es of maps from ''M'' to '''CP'''<sup>∞</sup>.
One also has the relation that
:<math>BU(1)= PU(H),</math>
that is, BU(1) is the infinite-dimensional [[projective unitary group]]. See that article for additional discussion and properties.
For a [[torus]] ''T'', which is abstractly isomorphic to U(1) × ... × U(1), but need not have a chosen identification, one writes B''T''.
The [[topological K-theory]] ''K''<sub>0</sub>(B''T'') is given by [[numerical polynomial]]s; more details below.
==Construction as an inductive limit==
Let ''F<sub>n</sub>''('''C'''<sup>''k''</sup>) be the space of orthonormal families of ''n'' vectors in '''C'''<sup>''k''</sup> and let ''G<sub>n</sub>''('''C'''<sup>''k''</sup>) be the Grassmannian of ''n''-dimensional subvector spaces of '''C'''<sup>''k''</sup>. The total space of the universal bundle can be taken to be the direct limit of the ''F<sub>n</sub>''('''C'''<sup>''k''</sup>) as ''k'' → ∞, while the base space is the direct limit of the ''G''<sub>''n''</sub>('''C'''<sup>''k''</sup>) as ''k'' → ∞.
===Validity of the construction===
In this section, we will define the topology on EU(''n'') and prove that EU(''n'') is indeed contractible.
The group U(''n'') acts freely on ''F''<sub>''n''</sub>('''C'''<sup>''k''</sup>) and the quotient is the Grassmannian ''G''<sub>''n''</sub>('''C'''<sup>''k''</sup>). The map
: <math>\begin{align}
F_n(\
(e_1,\ldots,e_n) & \longmapsto
\end{align}</math>
is a fibre bundle of fibre ''F''<
: <math>\pi_p(F_n(\
whenever <math>p\leq 2k-2</math>. By taking
: <math>\pi_p(F_n(\
This last group is trivial for
: <math>EU(n)={\lim_{\
be the [[direct limit]] of all the ''F''<
: <math>G_n(\
be the [[direct limit]] of all the ''G''<
<blockquote>'''Lemma:''' The group <math>\pi_p(EU(n))</math> is trivial for all ''p'' ≥ 1.</blockquote>
'''Proof:''' Let γ : '''S'''<sup>''p''</sup> → EU(''n''), since '''S'''<sup>''p''</sup> is [[compact space|compact]], there exists ''k'' such that γ('''S'''<sup>''p''</sup>) is included in ''F''<sub>''n''</sub>('''C'''<sup>''k''</sup>). By taking ''k'' big enough, we see that γ is homotopic, with respect to the base point, to the constant map.<math>\Box</math>
In addition, U(''n'') acts freely on EU(''n''). The spaces ''F''<sub>''n''</sub>('''C'''<sup>''k''</sup>) and ''G''<sub>''n''</sub>('''C'''<sup>''k''</sup>) are [[CW complex|CW-complexes]]. One can find a decomposition of these spaces into CW-complexes such that the decomposition of ''F''<sub>''n''</sub>('''C'''<sup>''k''</sup>), resp. ''G''<sub>''n''</sub>('''C'''<sup>''k''</sup>), is induced by restriction of the one for ''F''<sub>''n''</sub>('''C'''<sup>''k''+1</sup>), resp. ''G''<sub>''n''</sub>('''C'''<sup>''k''+1</sup>). Thus EU(''n'') (and also ''G''<sub>''n''</sub>('''C'''<sup>∞</sup>)) is a CW-complex. By [[Whitehead theorem|Whitehead Theorem]] and the above Lemma, EU(''n'') is contractible.
== Cohomology of BU(''n'')==
'''Proposition''': The [[cohomology ring]] of <math>\operatorname{BU}(n)</math> with coefficients in the [[Ring (mathematics)|ring]] <math>\mathbb{Z}</math> of [[Integer|integers]] is generated by the [[Chern class|Chern classes]]:<ref>Hatcher 02, Theorem 4D.4.</ref>
: <math>H^*(\operatorname{BU}(n);\mathbb{Z})
=\mathbb{Z}[c_1,\ldots,c_n].</math>
'''Proof:''' Let us first consider the case ''n'' = 1. In this case, U(1) is the circle '''S'''<sup>1</sup> and the universal bundle is '''S'''<sup>∞</sup> → '''CP'''<sup>∞</sup>. It is well known<ref>R. Bott, L. W. Tu-- ''Differential Forms in Algebraic Topology'', Graduate Texts in Mathematics 82, Springer</ref> that the cohomology of '''CP'''<sup>''k''</sup> is isomorphic to <math>\mathbb{Z}\lbrack c_1\rbrack/c_1^{k+1}</math>, where ''c''<sub>1</sub> is the [[Euler class]] of the U(1)-bundle '''S'''<sup>2''k''+1</sup> → '''CP'''<sup>''k''</sup>, and that the injections '''CP'''<sup>''k''</sup> → '''CP'''<sup>''k''+1</sup>, for ''k'' ∈ '''N'''*, are compatible with these presentations of the cohomology of the projective spaces. This proves the Proposition for ''n'' = 1.
There are homotopy fiber sequences
: <math> \mathbb{S}^{2n-1} \to B U(n-1) \to B U(n) </math>
Concretely, a point of the total space <math>BU(n-1)</math> is given by a point of the base space <math>BU(n)</math> classifying a complex vector space <math>V</math>, together with a unit vector <math>u</math> in <math>V</math>; together they classify <math> u^\perp < V </math> while the splitting <math>V = (\mathbb{C} u) \oplus u^\perp </math>, trivialized by <math>u</math>, realizes the map <math> B U(n-1) \to B U(n) </math> representing direct sum with <math>\mathbb{C}.</math>
Applying the [[Gysin sequence]], one has a long exact sequence
: <math> H^p ( BU(n) ) \overset{\smile d_{2n} \eta}{\longrightarrow} H^{p+2n} ( BU(n) ) \overset{j^*}{\longrightarrow} H^{p+2n} (BU(n-1)) \overset{\partial}{\longrightarrow} H^{p+1}(BU(n)) \longrightarrow \cdots </math>
where <math>\eta</math> is the [[fundamental class]] of the fiber <math>\mathbb{S}^{2n-1}</math>. By properties of the Gysin Sequence{{Citation needed|date=May 2016}}, <math>j^*</math> is a multiplicative homomorphism; by induction, <math>H^*BU(n-1)</math> is generated by elements with <math> p < -1 </math>, where <math>\partial</math> must be zero, and hence where <math>j^*</math> must be surjective. It follows that <math>j^*</math> must '''always''' be surjective: by the [[universal property]] of [[polynomial ring]]s, a choice of preimage for each generator induces a multiplicative splitting. Hence, by exactness, <math>\smile d_{2n}\eta </math> must always be '''injective'''. We therefore have [[short exact sequence]]s split by a ring homomorphism
: <math> 0 \to H^p ( BU(n) ) \overset{\smile d_{2n} \eta}{\longrightarrow} H^{p+2n} ( BU(n) ) \overset{j^*}{\longrightarrow} H^{p+2n} (BU(n-1)) \to 0 </math>
Thus we conclude <math>H^*(BU(n)) = H^*(BU(n-1))[c_{2n}]</math> where <math>c_{2n} = d_{2n} \eta</math>. This completes the induction.
==K-theory of BU(''n'')==
{{confusing section|date=August 2022}}
Consider topological complex K-theory as the cohomology theory represented by the spectrum <math>KU</math>. In this case, <math>KU^*(BU(n))\cong \mathbb{Z}[t,t^{-1}][[c_1,...,c_n]]</math>,<ref>Adams 1974, p. 49</ref> and <math> KU_*(BU(n))</math> is the free <math>\mathbb{Z}[t,t^{-1}]</math> module on <math>\beta_0</math> and <math>\beta_{i_1}\ldots\beta_{i_r}</math> for <math>n\geq i_j > 0</math> and <math>r\leq n</math>.<ref>Adams 1974, p. 47</ref> In this description, the product structure on <math> KU_*(BU(n)) </math> comes from the H-space structure of <math>BU</math> given by Whitney sum of vector bundles. This product is called the [[Pontryagin product]].
The [[topological K-theory]] is known explicitly in terms of [[numerical polynomial|numerical]] [[symmetric polynomial]]s.
The K-theory reduces to computing ''K''<
Thus <math>K_*(X) = \pi_*(K) \otimes K_0(X)</math>, where <math>\pi_*(K)=\mathbf{Z}[t,t^{-1}]</math>, where ''t'' is the Bott generator.
''K''<
For the ''n''-torus, ''K''<sub>0</sub>(B''T<sup>n</sup>'') is numerical polynomials in ''n'' variables. The map ''K''<sub>0</sub>(B''T<sup>n</sup>'') → ''K''<sub>0</sub>(BU(''n'')) is onto, via a [[splitting principle]], as ''T<sup>n</sup>'' is the [[maximal torus]] of U(''n''). The map is the symmetrization map
:<math>f(w_1,\dots,w_n) \mapsto \frac{1}{n!} \sum_{\sigma \in S_n} f(x_{\sigma(1)}, \dots, x_{\sigma(n)})</math>
and the image can be identified as the symmetric polynomials satisfying the integrality condition that
:<math> {n \choose n_1, n_2, \ldots, n_r}f(k_1,\dots,k_n) \in \mathbf{Z}</math>
where
is the [[multinomial coefficient]] and <math>k_1,\dots,k_n</math> contains ''r'' distinct integers, repeated <math>n_1,\dots,n_r</math> times, respectively.
== Infinite classifying space ==
The canonical inclusions <math>\operatorname{U}(n)\hookrightarrow\operatorname{U}(n+1)</math> induce canonical inclusions <math>\operatorname{BU}(n)\hookrightarrow\operatorname{BU}(n+1)</math> on their respective classifying spaces. Their respective colimits are denoted as:
: <math>\operatorname{U}
:=\lim_{n\rightarrow\infty}\operatorname{U}(n);</math>
: <math>\operatorname{BU}
:=\lim_{n\rightarrow\infty}\operatorname{BU}(n).</math>
<math>\operatorname{BU}</math> is indeed the classifying space of <math>\operatorname{U}</math>.
==See also==
* [[Classifying space for O(n)|Classifying space for O(''n'')]]
* [[Classifying space for SO(n)]]
* [[Classifying space for SU(n)]]
* [[Topological K-theory]]
* [[Atiyah–Jänich theorem]]
== Notes ==
Line 141 ⟶ 147:
==References==
*{{citation
|author=
|title=Stable Homotopy and Generalised Homology
|publisher=University Of Chicago Press
|year=1974
|isbn=0-226-00524-0
}} Contains calculation of <math>KU^*(BU(n))</math> and <math>KU_*(BU(n))</math>.
*{{citation
|author1=S. Ochanine |author2=L. Schwartz |title=Une remarque sur les générateurs du cobordisme complex
|journal=Math. Z.
|volume=190
|year=1985
|issue=4
|pages=543–557
|doi=10.1007/BF01214753
Line 157 ⟶ 170:
}} Explicit description of <math>K_0(BU(n))</math>
*{{citation
|
|journal=Trans. Amer. Math. Soc.
|volume=316
Line 164 ⟶ 176:
|year=1989
|pages=385–432
|doi=10.2307/2001355
|jstor=2001355
|publisher=American Mathematical Society
}}
*{{cite book|last=Hatcher|first=Allen|title=Algebraic topology|publisher=[[Cambridge University Press]]|___location=Cambridge|year=2002|language=en|isbn=0-521-79160-X|url=https://pi.math.cornell.edu/~hatcher/AT/ATpage.html}}
*{{cite book|title=Universal principal bundles and classifying spaces|publisher=|___location=|isbn=|url=https://math.mit.edu/~mbehrens/18.906/prin.pdf|doi=|last=Mitchell|first=Stephen|year=August 2001}}
== External links ==
* [[nlab:classifying+space|classifying space]] on [[nLab]]
* [[nlab:BU(n)|BU(n)]] on nLab
[[Category:Homotopy theory]]
|