Classifying space for U(n): Difference between revisions

Content deleted Content added
m Citations: [Pu158]+: jstor. Tweaked: publisher. You can use this bot yourself! Report bugs here.
Added principal U(1)-bundles.
 
(43 intermediate revisions by 20 users not shown)
Line 1:
{{Short description|Exact homotopy case}}
In [[mathematics]], the '''[[classifying space]] for [[unitary group|U(''n'')]]''' may be constructed as either
{{DISPLAYTITLE:Classifying space for U(''n'')}}
In [[mathematics]], the '''[[classifying space]] for the [[unitary group]]''' U(''n'') is a space BU(''n'') together with a universal bundle EU(''n'') such that any hermitian bundle on a [[paracompact space]] ''X'' is the pull-back of EU(''n'') by a map ''X'' → BU(''n'') unique up to homotopy. A particular application are [[Principal U(1)-bundle|principal U(1)-bundles]].
 
This space with its universal fibration may be constructed as either
# the [[Grassmannian]] of ''n''-planes in an infinite-dimensional complex [[Hilbert space]]; or,
# the direct limit, with the induced topology, of [[Grassmannian|Grassmannians]]s of ''n'' planes.
Both constructions are detailed here.
 
==Construction 1as an infinite Grassmannian==
The [[total space]] <math>EU(''n'')</math> of the [[universal bundle]] is given by
 
:<math>EU(n)=\left \{e_1,\ldots,e_n \ : \ (e_i,e_j)=\delta_{ij}, e_i\in \mathcal{H} \}.right \, }.</math>
 
Here, ''H'' isdenotes an infinite-dimensional complex Hilbert space, the ''e''<mathsub>e_i''i''</mathsub> are vectors in ''H'', and <math>\delta_{ij}</math> is the [[Kronecker delta]]. The symbol <math>(\cdot,\cdot)</math> is the [[inner product]] on ''H''. Thus, we have that ''EU(''n)'') is the space of [[orthonormal]] ''n''-frames in ''H''.
 
The [[Group action (mathematics)|group action]] of ''U''(''n'') on this space is the natural one. The [[base space]] is then
 
:<math>BU(n)=EU(n)/U(n) \, </math>
 
and is the set of [[Grassmannian]] ''n''-dimensional subspaces (or ''n''-planes) in ''H''. That is,
 
:<math>BU(n) = \{ V \subset \mathcal{H} \ : \ \dim V = n \} \, </math>
 
so that ''V'' is an ''n''-dimensional vector space.
 
=== Case of line bundles ===
==Construction 2==
For ''n'' = 1, one has EU(1) = '''S'''<sup>∞</sup>, which is [[Contractibility of unit sphere in Hilbert space|known to be a contractible space]]. The base space is then BU(1) = '''CP'''<sup>∞</sup>, the infinite-dimensional [[complex projective space]]. Thus, the set of [[isomorphism class]]es of [[circle bundle]]s over a [[manifold]] ''M'' are in one-to-one correspondence with the [[homotopy class]]es of maps from ''M'' to '''CP'''<sup>∞</sup>.
Let <math>F_n(\mathbb{C}^k)</math> be the space of orthonormal families of <math>n</math> vectors in <math>\mathbb{C}^k</math> and let <math>G_n(\mathbb{C}^k)</math> be the Grassmannian of <math>n</math>-dimensional subvector spaces of <math>\mathbb{C}^k</math>. The total space of the universal bundle can be taken to be the direct limit of the <math>F_n(\mathbb{C}^k)</math> as <math>k</math> goes to infinity, while the base space is the direct limit of the <math>G_n(\mathbb{C}^k)</math> as <math>k</math> goes to infinity.
 
One also has the relation that
==Validity of the second construction==
 
In this section, we will define the topology on ''EU(n)'' and prove that ''EU(n)'' is indeed contractible.
:<math>BU(1)= PU(H),</math>
 
that is, BU(1) is the infinite-dimensional [[projective unitary group]]. See that article for additional discussion and properties.
 
For a [[torus]] ''T'', which is abstractly isomorphic to U(1) × ... × U(1), but need not have a chosen identification, one writes B''T''.
 
The [[topological K-theory]] ''K''<sub>0</sub>(B''T'') is given by [[numerical polynomial]]s; more details below.
 
==Construction as an inductive limit==
Let ''F<sub>n</sub>''('''C'''<sup>''k''</sup>) be the space of orthonormal families of ''n'' vectors in '''C'''<sup>''k''</sup> and let ''G<sub>n</sub>''('''C'''<sup>''k''</sup>) be the Grassmannian of ''n''-dimensional subvector spaces of '''C'''<sup>''k''</sup>. The total space of the universal bundle can be taken to be the direct limit of the ''F<sub>n</sub>''('''C'''<sup>''k''</sup>) as ''k'' → ∞, while the base space is the direct limit of the ''G''<sub>''n''</sub>('''C'''<sup>''k''</sup>) as ''k'' → ∞.
 
===Validity of the construction===
In this section, we will define the topology on EU(''n'') and prove that EU(''n'') is indeed contractible.
 
The group U(''n'') acts freely on ''F''<sub>''n''</sub>('''C'''<sup>''k''</sup>) and the quotient is the Grassmannian ''G''<sub>''n''</sub>('''C'''<sup>''k''</sup>). The map
Let <math>F_n(\mathbb{C}^k)</math> be the space of orthonormal families of <math>n</math> vectors in <math>\mathbb{C}^k</math>. The group <math>U(n)</math> acts
freely on <math>F_n(\mathbb{C}^k)</math> and the quotient is the Grassmannian <math>G_n(\mathbb{C}^k)</math> of <math>n</math>-dimensional subvector spaces of <math>\mathbb{C}^k</math>. The map
 
: <math>\begin{align}
F_n(\mathbbmathbf{C}^k) & \longrightarrow \mathbf{S}^{2k-1} \\
(e_1,\ldots,e_n) & \longmapsto e_n
\end{align}</math>
 
is a fibre bundle of fibre ''F''<mathsub>F_{''n-1}''−1</sub>(\mathbb{'''C}^{'''<sup>''k-1})''−1</mathsup>). Thus because <math>\pi_p(\mathbf{S}^{2k-1})</math> is trivial and because of the [[Homotopy group|long exact sequence of the fibration]], we have
 
: <math>\pi_p(F_n(\mathbbmathbf{C}^k))=\pi_p(F_{n-1}(\mathbbmathbf{C}^{k-1}))</math>
 
whenever <math>p\leq 2k-2</math>. By taking <math>''k</math>'' big enough, precisely for <math>k>\fractfrac{1}{2}p+n-1</math>, we can repeat the process and get
 
: <math>\pi_p(F_n(\mathbbmathbf{C}^k)) = \pi_p(F_{n-1}(\mathbbmathbf{C}^{k-1})) = \cdots = \pi_p(F_1(\mathbbmathbf{C}^{k+1-n})) = \pi_p(\mathbf{S}^{k-n}).</math>
 
This last group is trivial for ''k''&nbsp;>&nbsp;''n''&nbsp;+&nbsp;''p''. Let
 
: <math>EU(n)={\lim_{\rightarrowto}}\;_{k\rightarrowto\infty}F_n(\mathbbmathbf{C}^k)</math>
 
be the [[direct limit]] of all the ''F''<mathsub>''n''</sub>F_n(\mathbb{'''C}^'''<sup>''k)''</mathsup>) (with the induced topology). Let
 
: <math>G_n(\mathbbmathbf{C}^\infty)={\lim_{\rightarrow}to}\;_{k\rightarrowto\infty}G_n(\mathbbmathbf{C}^k)</math>
 
be the [[direct limit]] of all the ''G''<mathsub>''n''</sub>G_n(\mathbb{'''C}^'''<sup>''k)''</mathsup>) (with the induced topology).
 
<blockquote>'''Lemma:''' The group <math>\pi_p(EU(n))</math> is trivial for all ''p'' ≥ 1.</blockquote>
'''Lemma'''<br />
The group <math>\pi_p(EU(n))</math> is trivial for all <math>p\ge 1</math>.<br />
'''Proof'''
Let <math>\gamma</math> be a map from the sphere <math>S^p</math> to ''EU(n)''. As <math>S^p</math> is [[compact space|compact]],
there exists <math>k</math> such that <math>\gamma(S^p)</math> is included in <math>F_n(\mathbb{C}^k)</math>. By taking <math>k</math> big enough,
we see that <math>\gamma</math> is homotopic, with respect to the base point, to the constant map.
<math>\Box</math>
 
'''Proof:''' Let γ : '''S'''<sup>''p''</sup> → EU(''n''), since '''S'''<sup>''p''</sup> is [[compact space|compact]], there exists ''k'' such that γ('''S'''<sup>''p''</sup>) is included in ''F''<sub>''n''</sub>('''C'''<sup>''k''</sup>). By taking ''k'' big enough, we see that γ is homotopic, with respect to the base point, to the constant map.<math>\Box</math>
In addition, <math>U(n)</math> acts freely on <math>EU(n)</math>. The spaces <math>F_n(\mathbb{C}^k)</math> and <math>G_n(\mathbb{C}^k)</math> are [[CW complex|CW-complexes]]. One can
find a decomposition of these spaces into CW-complexes such that the decomposition of <math>F_n(\mathbb{C}^k)</math>, resp.
<math>G_n(\mathbb{C}^k)</math>, is induced by restriction of the one for <math>F_n(\mathbb{C}^{k+1})</math>, resp. <math>G_n(\mathbb{C}^{k+1})</math>. Thus <math>EU(n)</math> (and also <math>G_n(\mathbb{C}^\infty)</math>) is a CW-complex. By
[[Whitehead theorem|Whitehead Theorem]] and the above Lemma, <math>EU(n)</math> is contractible.
 
In addition, U(''n'') acts freely on EU(''n''). The spaces ''F''<sub>''n''</sub>('''C'''<sup>''k''</sup>) and ''G''<sub>''n''</sub>('''C'''<sup>''k''</sup>) are [[CW complex|CW-complexes]]. One can find a decomposition of these spaces into CW-complexes such that the decomposition of ''F''<sub>''n''</sub>('''C'''<sup>''k''</sup>), resp. ''G''<sub>''n''</sub>('''C'''<sup>''k''</sup>), is induced by restriction of the one for ''F''<sub>''n''</sub>('''C'''<sup>''k''+1</sup>), resp. ''G''<sub>''n''</sub>('''C'''<sup>''k''+1</sup>). Thus EU(''n'') (and also ''G''<sub>''n''</sub>('''C'''<sup>∞</sup>)) is a CW-complex. By [[Whitehead theorem|Whitehead Theorem]] and the above Lemma, EU(''n'') is contractible.
== Case of <math> n = 1 </math> (first construction)==
In the case of <math> n = 1 </math>, one has
 
== Cohomology of BU(''n'')==
:<math>EU(1)= S^\infty.\,</math>
'''Proposition''': The [[cohomology ring]] of <math>\operatorname{BU}(n)</math> with coefficients in the [[Ring (mathematics)|ring]] <math>\mathbb{Z}</math> of [[Integer|integers]] is generated by the [[Chern class|Chern classes]]:<ref>Hatcher 02, Theorem 4D.4.</ref>
 
: <math>H^*(\operatorname{BU}(n);\mathbb{Z})
[[Contractibility of unit sphere in Hilbert space|known to be a contractible space]].
=\mathbb{Z}[c_1,\ldots,c_n].</math>
 
'''Proof:''' Let us first consider the case ''n'' = 1. In this case, U(1) is the circle '''S'''<sup>1</sup> and the universal bundle is '''S'''<sup>∞</sup> → '''CP'''<sup>∞</sup>. It is well known<ref>R. Bott, L. W. Tu-- ''Differential Forms in Algebraic Topology'', Graduate Texts in Mathematics 82, Springer</ref> that the cohomology of '''CP'''<sup>''k''</sup> is isomorphic to <math>\mathbb{Z}\lbrack c_1\rbrack/c_1^{k+1}</math>, where ''c''<sub>1</sub> is the [[Euler class]] of the U(1)-bundle '''S'''<sup>2''k''+1</sup> → '''CP'''<sup>''k''</sup>, and that the injections '''CP'''<sup>''k''</sup> → '''CP'''<sup>''k''+1</sup>, for ''k'' ∈ '''N'''*, are compatible with these presentations of the cohomology of the projective spaces. This proves the Proposition for ''n'' = 1.
The base space is then
 
There are homotopy fiber sequences
:<math>BU(1)= \mathbb{C}P^\infty,\,</math>
 
: <math> \mathbb{S}^{2n-1} \to B U(n-1) \to B U(n) </math>
the infinite-dimensional [[complex projective space]]. Thus, the set of [[isomorphism class]]es of [[circle bundle]]s over a [[manifold]] <math>M</math> are in one-to-one correspondence with the [[homotopy class]]es of maps from <math>M</math> to <math>\mathbb{C}P^\infty</math>.
 
Concretely, a point of the total space <math>BU(n-1)</math> is given by a point of the base space <math>BU(n)</math> classifying a complex vector space <math>V</math>, together with a unit vector <math>u</math> in <math>V</math>; together they classify <math> u^\perp < V </math> while the splitting <math>V = (\mathbb{C} u) \oplus u^\perp </math>, trivialized by <math>u</math>, realizes the map <math> B U(n-1) \to B U(n) </math> representing direct sum with <math>\mathbb{C}.</math>
One also has the relation that
 
Applying the [[Gysin sequence]], one has a long exact sequence
:<math>BU(1)= PU(\mathcal{H}),</math>
 
: <math> H^p ( BU(n) ) \overset{\smile d_{2n} \eta}{\longrightarrow} H^{p+2n} ( BU(n) ) \overset{j^*}{\longrightarrow} H^{p+2n} (BU(n-1)) \overset{\partial}{\longrightarrow} H^{p+1}(BU(n)) \longrightarrow \cdots </math>
that is, <math>BU(1)</math> is the infinite-dimensional [[projective unitary group]]. See that article for additional discussion and properties.
 
where <math>\eta</math> is the [[fundamental class]] of the fiber <math>\mathbb{S}^{2n-1}</math>. By properties of the Gysin Sequence{{Citation needed|date=May 2016}}, <math>j^*</math> is a multiplicative homomorphism; by induction, <math>H^*BU(n-1)</math> is generated by elements with <math> p < -1 </math>, where <math>\partial</math> must be zero, and hence where <math>j^*</math> must be surjective. It follows that <math>j^*</math> must '''always''' be surjective: by the [[universal property]] of [[polynomial ring]]s, a choice of preimage for each generator induces a multiplicative splitting. Hence, by exactness, <math>\smile d_{2n}\eta </math> must always be '''injective'''. We therefore have [[short exact sequence]]s split by a ring homomorphism
For a [[torus]] ''T'', which is abstractly isomorphic to <math>U(1)\times \dots \times U(1)</math>, but need not have a chosen identification, one writes <math>BT</math>.
 
: <math> 0 \to H^p ( BU(n) ) \overset{\smile d_{2n} \eta}{\longrightarrow} H^{p+2n} ( BU(n) ) \overset{j^*}{\longrightarrow} H^{p+2n} (BU(n-1)) \to 0 </math>
The [[topological K-theory]] <math>K_0(BT)</math> is given by [[numerical polynomial]]s; more details below.
 
Thus we conclude <math>H^*(BU(n)) = H^*(BU(n-1))[c_{2n}]</math> where <math>c_{2n} = d_{2n} \eta</math>. This completes the induction.
== Cohomology of <math>BU(n)</math> ==
'''Proposition'''<br />
The [[cohomology]] of the classifying space <math>H^*(BU(n))</math> is a [[Ring (mathematics)|ring]] of [[polynomials]] in <math>n</math> variables
<math>c_1,\ldots,c_n</math> where <math>c_p</math> is of degree <math>2p</math>.
<br />'''Proof'''
Let us first consider the case <math>n=1</math>. In this case, <math>U(1)</math> is the circle <math>S^1</math> and the universal bundle
is <math>S^\infty\longrightarrow \mathbb{C}P^\infty</math>. It is well known<ref>R. Bott, L. W. Tu
-- ''Differential Forms in Algebraic Topology'', Graduate Texts in Mathematics 82,
Springer</ref> that the cohomology of
<math>\mathbb{C}P^k</math> is isomorphic to <math>\mathbb{R}\lbrack c_1\rbrack/c_1^{k+1}</math>, where <math>c_1</math> is the [[Euler class]] of
the <math>U(1)</math>-bundle <math>S^{2k+1}\longrightarrow \mathbb{C}P^k</math>, and that the injections <math>\mathbb{C}P^k\longrightarrow \mathbb{C}P^{k+1}</math>,
for <math>k\in \mathbb{N}^*</math>, are compatible with these presentations of the cohomology of the projective spaces.
This proves the Proposition for <math>n=1</math>.
 
==K-theory of BU(''n'')==
In the general case, let <math>T</math> be the subgroup of diagonal matrices. It is a [[maximal torus]] in <math>U(n)</math>. Its
{{confusing section|date=August 2022}}
classifying space is <math>(\mathbb{C}P^\infty)^n</math> and its cohomology is <math>\mathbb{R}\lbrack x_1,\ldots,x_n\rbrack</math>, where
Consider topological complex K-theory as the cohomology theory represented by the spectrum <math>KU</math>. In this case, <math>KU^*(BU(n))\cong \mathbb{Z}[t,t^{-1}][[c_1,...,c_n]]</math>,<ref>Adams 1974, p. 49</ref> and <math> KU_*(BU(n))</math> is the free <math>\mathbb{Z}[t,t^{-1}]</math> module on <math>\beta_0</math> and <math>\beta_{i_1}\ldots\beta_{i_r}</math> for <math>n\geq i_j > 0</math> and <math>r\leq n</math>.<ref>Adams 1974, p. 47</ref> In this description, the product structure on <math> KU_*(BU(n)) </math> comes from the H-space structure of <math>BU</math> given by Whitney sum of vector bundles. This product is called the [[Pontryagin product]].
<math>x_i</math> is the [[Euler class]] of the tautological bundle over the ''i''-th <math>\mathbb{C}P^\infty</math>. The
[[Weyl group]] acts on <math>T</math> by permuting the diagonal entries, hence it acts on <math>(\mathbb{C}P^\infty)^n</math> by
permutation of the factors. The induced action on its cohomology is the permutation of the
<math>x_i</math>'s. We deduce
<br /><math>H^*(BU(n))=\mathbb{R}\lbrack c_1,\ldots,c_n\rbrack,</math><br />
where the <math>c_i</math>'s are the [[symmetric polynomials]] in the <math>x_i</math>'s.
<math>\Box</math><br />
 
== K-theory of <math>BU(n)</math> ==
The [[topological K-theory]] is known explicitly in terms of [[numerical polynomial|numerical]] [[symmetric polynomial]]s.
 
The K-theory reduces to computing ''K''<mathsub>K_00</mathsub>, since K-theory is 2-periodic by the [[Bott periodicity theorem]], and BU(''n'') is a limit of complex manifolds, so it has a [[CW-structure]] with only cells in even dimensions, so odd K-theory vanishes.
<math>BU(n)</math> is a limit of complex manifolds, so it has a [[CW-structure]] with only cells in even dimensions, so odd K-theory vanishes.
 
Thus <math>K_*(X) = \pi_*(K) \otimes K_0(X)</math>, where <math>\pi_*(K)=\mathbf{Z}[t,t^{-1}]</math>, where ''t'' is the Bott generator.
 
''K''<mathsub>0</sub>K_0(BU(1))</math> is the ring of [[numerical polynomial]]s in ''w'', regarded as a subring of ''H''<mathsub>∗</sub>H_*(BU(1);\mathbf{ '''Q}''') =\mathbf{ '''Q}'''[''w'']</math>, where ''w'' is element dual to tautological bundle.
 
For the ''n''-torus, ''K''<sub>0</sub>(B''T<sup>n</sup>'') is numerical polynomials in ''n'' variables. The map ''K''<sub>0</sub>(B''T<sup>n</sup>'') → ''K''<sub>0</sub>(BU(''n'')) is onto, via a [[splitting principle]], as ''T<sup>n</sup>'' is the [[maximal torus]] of U(''n''). The map is the symmetrization map
 
:<math>f(w_1,\dots,w_n) \mapsto \frac{1}{n!} \sum_{\sigma \in S_n} f(x_{\sigma(1)}, \dots, x_{\sigma(n)})</math>
 
and the image can be identified as the symmetric polynomials satisfying the integrality condition that
 
For the ''n''-torus, <math>K_0(BT^n)</math> is numerical polynomials in ''n'' variables.
The map <math>K_0(BT^n) \to K_0(BU(n))</math> is onto, via a [[splitting principle]], as <math>T^n</math> is the [[maximal torus]] of <math>U(n)</math>. The map is the symmetrization map
:<math>f(w_1,\dots,w_n) \mapsto \frac{1}{n!} \sum_{\sigma \in S_n} f(x_{\sigma(1)},\dots,x_{\sigma(n)})</math>
and the image can be identified as the symmetric polynomials satisfying the integrality condition that
:<math> {n \choose n_1, n_2, \ldots, n_r}f(k_1,\dots,k_n) \in \mathbf{Z}</math>
 
where
 
:<math> {n \choose k_1, k_2, \ldots, k_m}
:<math> {n \choose k_1, k_2, \ldots, k_m} = \frac{n!}{k_1!\, k_2! \cdots k_m!}</math>
 
is the [[multinomial coefficient]] and <math>k_1,\dots,k_n</math> contains ''r'' distinct integers, repeated <math>n_1,\dots,n_r</math> times, respectively.
 
== Infinite classifying space ==
The canonical inclusions <math>\operatorname{U}(n)\hookrightarrow\operatorname{U}(n+1)</math> induce canonical inclusions <math>\operatorname{BU}(n)\hookrightarrow\operatorname{BU}(n+1)</math> on their respective classifying spaces. Their respective colimits are denoted as:
 
: <math>\operatorname{U}
:=\lim_{n\rightarrow\infty}\operatorname{U}(n);</math>
: <math>\operatorname{BU}
:=\lim_{n\rightarrow\infty}\operatorname{BU}(n).</math>
 
<math>\operatorname{BU}</math> is indeed the classifying space of <math>\operatorname{U}</math>.
 
==See also==
* [[Classifying space for O(n)|Classifying space for O(''n'')]]
* [[Classifying space for SO(n)]]
* [[Classifying space for SU(n)]]
* [[Topological K-theory]]
* [[Atiyah–Jänich theorem]]
 
== Notes ==
Line 141 ⟶ 147:
==References==
*{{citation
|author=SJ. Ochanine, LF. SchwartzAdams
|title=Stable Homotopy and Generalised Homology
|title=Une remarque sur les générateurs du cobordisme complex
|publisher=University Of Chicago Press
|year=1974
|isbn=0-226-00524-0
}} Contains calculation of <math>KU^*(BU(n))</math> and <math>KU_*(BU(n))</math>.
*{{citation
|author1=S. Ochanine |author2=L. Schwartz |title=Une remarque sur les générateurs du cobordisme complex
|journal=Math. Z.
|volume=190
|year=1985
|issue=4
|pages=543–557
|doi=10.1007/BF01214753
Line 157 ⟶ 170:
}} Explicit description of <math>K_0(BU(n))</math>
*{{citation
|authorauthor1=A. Baker, |author2=F. Clarke, |author3=N. Ray, |author4=L. Schwartz |title=On the Kummer congruences and the stable homotopy of ''BU''
|title=On the Kummer congruences and the stable homotopy of ''BU''
|journal=Trans. Amer. Math. Soc.
|volume=316
Line 164 ⟶ 176:
|year=1989
|pages=385–432
|url=http://links.jstor.org/sici?sici=0002-9947%28198912%29316%3A2%3C385%3AOTKCAT%3E2.0.CO%3B2-F
|doi=10.2307/2001355
|jstor=10.2307/2001355
|publisher=American Mathematical Society
}}
*{{cite book|last=Hatcher|first=Allen|title=Algebraic topology|publisher=[[Cambridge University Press]]|___location=Cambridge|year=2002|language=en|isbn=0-521-79160-X|url=https://pi.math.cornell.edu/~hatcher/AT/ATpage.html}}
*{{cite book|title=Universal principal bundles and classifying spaces|publisher=|___location=|isbn=|url=https://math.mit.edu/~mbehrens/18.906/prin.pdf|doi=|last=Mitchell|first=Stephen|year=August 2001}}
 
== External links ==
 
* [[nlab:classifying+space|classifying space]] on [[nLab]]
* [[nlab:BU(n)|BU(n)]] on nLab
 
[[Category:Homotopy theory]]