Content deleted Content added
Added principal U(1)-bundles. |
|||
(26 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Short description|Exact homotopy case}}
In [[mathematics]], the '''[[classifying space]] for the [[unitary group]]''' U(''n'') is a space BU(''n'') together with a universal bundle EU(''n'') such that any hermitian bundle on a [[paracompact space]] ''X'' is the pull-back of EU(''n'') by a map ''X'' → BU(''n'') unique up to homotopy.▼
{{DISPLAYTITLE:Classifying space for U(''n'')}}
▲In [[mathematics]], the '''[[classifying space]] for the [[unitary group]]''' U(''n'') is a space BU(''n'') together with a universal bundle EU(''n'') such that any hermitian bundle on a [[paracompact space]] ''X'' is the pull-back of EU(''n'') by a map ''X'' → BU(''n'') unique up to homotopy. A particular application are [[Principal U(1)-bundle|principal U(1)-bundles]].
This space with its universal fibration may be constructed as either
Line 9 ⟶ 11:
The [[total space]] EU(''n'') of the [[universal bundle]] is given by
:<math>EU(n)=\left \{e_1,\ldots,e_n \ : \ (e_i,e_j)=\delta_{ij}, e_i\in
Here, ''H''
The [[Group action (mathematics)|group action]] of U(''n'') on this space is the natural one. The [[base space]] is then
:<math>BU(n)=EU(n)/U(n) </math>
Line 19 ⟶ 21:
and is the set of [[Grassmannian]] ''n''-dimensional subspaces (or ''n''-planes) in ''H''. That is,
:<math>BU(n) = \{ V \subset
so that ''V'' is an ''n''-dimensional vector space.
Line 28 ⟶ 30:
One also has the relation that
:<math>BU(1)= PU(
that is, BU(1) is the infinite-dimensional [[projective unitary group]]. See that article for additional discussion and properties.
Line 74 ⟶ 76:
== Cohomology of BU(''n'')==
: <math>H^*(\operatorname{BU}(n);\mathbb{Z})
=\mathbb{Z}[c_1,\ldots,c_n].</math>
There are homotopy fiber sequences
: <math> \mathbb{S}^{2n-1} \to B U(n-1) \to B U(n) </math>
==K-theory of BU(''n'')==▼
Applying the [[Gysin sequence]], one has a long exact sequence
: <math> H^p ( BU(n) ) \overset{\smile d_{2n} \eta}{\longrightarrow} H^{p+2n} ( BU(n) ) \overset{j^*}{\longrightarrow} H^{p+2n} (BU(n-1)) \overset{\partial}{\longrightarrow} H^{p+1}(BU(n)) \longrightarrow \cdots </math>
where <math>\eta</math> is the [[fundamental class]] of the fiber <math>\mathbb{S}^{2n-1}</math>. By properties of the Gysin Sequence{{Citation needed|date=May 2016}}, <math>j^*</math> is a multiplicative homomorphism; by induction, <math>H^*BU(n-1)</math> is generated by elements with <math> p < -1 </math>, where <math>\partial</math> must be zero, and hence where <math>j^*</math> must be surjective. It follows that <math>j^*</math> must '''always''' be surjective: by the [[universal property]] of [[polynomial ring]]s, a choice of preimage for each generator induces a multiplicative splitting. Hence, by exactness, <math>\smile d_{2n}\eta </math> must always be '''injective'''. We therefore have [[short exact sequence]]s split by a ring homomorphism
: <math> 0 \to H^p ( BU(n) ) \overset{\smile d_{2n} \eta}{\longrightarrow} H^{p+2n} ( BU(n) ) \overset{j^*}{\longrightarrow} H^{p+2n} (BU(n-1)) \to 0 </math>
Thus we conclude <math>H^*(BU(n)) = H^*(BU(n-1))[c_{2n}]</math> where <math>c_{2n} = d_{2n} \eta</math>. This completes the induction.
▲==K-theory of BU(''n'')==
{{confusing section|date=August 2022}}
Consider topological complex K-theory as the cohomology theory represented by the spectrum <math>KU</math>. In this case, <math>KU^*(BU(n))\cong \mathbb{Z}[t,t^{-1}][[c_1,...,c_n]]</math>,<ref>Adams 1974, p. 49</ref> and <math> KU_*(BU(n))</math> is the free <math>\mathbb{Z}[t,t^{-1}]</math> module on <math>\beta_0</math> and <math>\beta_{i_1}\ldots\beta_{i_r}</math> for <math>n\geq i_j > 0</math> and <math>r\leq n</math>.<ref>Adams 1974, p. 47</ref> In this description, the product structure on <math> KU_*(BU(n)) </math> comes from the H-space structure of <math>BU</math> given by Whitney sum of vector bundles. This product is called the [[Pontryagin product]].
The [[topological K-theory]] is known explicitly in terms of [[numerical polynomial|numerical]] [[symmetric polynomial]]s.
Line 101 ⟶ 113:
For the ''n''-torus, ''K''<sub>0</sub>(B''T<sup>n</sup>'') is numerical polynomials in ''n'' variables. The map ''K''<sub>0</sub>(B''T<sup>n</sup>'') → ''K''<sub>0</sub>(BU(''n'')) is onto, via a [[splitting principle]], as ''T<sup>n</sup>'' is the [[maximal torus]] of U(''n''). The map is the symmetrization map
:<math>f(w_1,\dots,w_n) \mapsto \frac{1}{n!} \sum_{\sigma \in S_n} f(x_{\sigma(1)}, \dots, x_{\sigma(n)})</math>
and the image can be identified as the symmetric polynomials satisfying the integrality condition that
:<math> {n \choose n_1, n_2, \ldots, n_r}f(k_1,\dots,k_n) \in \mathbf{Z}</math>
Line 112 ⟶ 124:
is the [[multinomial coefficient]] and <math>k_1,\dots,k_n</math> contains ''r'' distinct integers, repeated <math>n_1,\dots,n_r</math> times, respectively.
== Infinite classifying space ==
The canonical inclusions <math>\operatorname{U}(n)\hookrightarrow\operatorname{U}(n+1)</math> induce canonical inclusions <math>\operatorname{BU}(n)\hookrightarrow\operatorname{BU}(n+1)</math> on their respective classifying spaces. Their respective colimits are denoted as:
: <math>\operatorname{U}
:=\lim_{n\rightarrow\infty}\operatorname{U}(n);</math>
: <math>\operatorname{BU}
:=\lim_{n\rightarrow\infty}\operatorname{BU}(n).</math>
<math>\operatorname{BU}</math> is indeed the classifying space of <math>\operatorname{U}</math>.
==See also==
* [[Classifying space for O(n)|Classifying space for O(''n'')]]
* [[Classifying space for SO(n)]]
* [[Classifying space for SU(n)]]
* [[Topological K-theory]]
* [[
== Notes ==
Line 130 ⟶ 154:
}} Contains calculation of <math>KU^*(BU(n))</math> and <math>KU_*(BU(n))</math>.
*{{citation
|
|journal=Math. Z.
|volume=190
Line 147 ⟶ 170:
}} Explicit description of <math>K_0(BU(n))</math>
*{{citation
|
|journal=Trans. Amer. Math. Soc.
|volume=316
Line 158 ⟶ 180:
|publisher=American Mathematical Society
}}
*{{cite book|last=Hatcher|first=Allen|title=Algebraic topology|publisher=[[Cambridge University Press]]|___location=Cambridge|year=2002|language=en|isbn=0-521-79160-X|url=https://pi.math.cornell.edu/~hatcher/AT/ATpage.html}}
*{{cite book|title=Universal principal bundles and classifying spaces|publisher=|___location=|isbn=|url=https://math.mit.edu/~mbehrens/18.906/prin.pdf|doi=|last=Mitchell|first=Stephen|year=August 2001}}
== External links ==
* [[nlab:classifying+space|classifying space]] on [[nLab]]
* [[nlab:BU(n)|BU(n)]] on nLab
[[Category:Homotopy theory]]
|