Content deleted Content added
No edit summary Tags: Reverted Mobile edit Mobile web edit |
|||
(9 intermediate revisions by 5 users not shown) | |||
Line 1:
{{Short description|Artificial neural network node function}}
{{About||the formalism used to approximate the influence of an extracellular electrical field on neurons|activating function|a linear system’s transfer
{{Machine learning}}
{{Use dmy dates|date=August 2025}}
[[File:Logistic-curve.svg|thumb|Logistic activation function]]
The '''activation function''' of a node in an [[artificial neural network]] is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is ''nonlinear''.<ref>{{Cite web|url=http://didattica.cs.unicam.it/lib/exe/fetch.php?media=didattica:magistrale:kebi:ay_1718:ke-11_neural_networks.pdf|title=Neural Networks, p. 7|last=Hinkelmann|first=Knut|website=University of Applied Sciences Northwestern Switzerland|access-date=6 October 2018
Modern activation functions include the logistic ([[Sigmoid function|sigmoid]]) function used in the 2012 [[speech recognition]] model developed by [[Geoffrey Hinton|Hinton]] et al;<ref>{{Cite journal |last1=Hinton |first1=Geoffrey |last2=Deng |first2=Li |last3=Deng |first3=Li |last4=Yu |first4=Dong |last5=Dahl |first5=George |last6=Mohamed |first6=Abdel-rahman |last7=Jaitly |first7=Navdeep |last8=Senior |first8=Andrew |last9=Vanhoucke |first9=Vincent |last10=Nguyen |first10=Patrick |last11=Sainath |first11=Tara|author11-link= Tara Sainath |last12=Kingsbury |first12=Brian |year=2012 |title=Deep Neural Networks for Acoustic Modeling in Speech Recognition |journal=IEEE Signal Processing Magazine |volume=29 |issue=6 |pages=82–97 |doi=10.1109/MSP.2012.2205597|s2cid=206485943 }}</ref> the [[ReLU]] used in the 2012 [[AlexNet]] computer vision model<ref>{{Cite journal |last1=Krizhevsky |first1=Alex |last2=Sutskever |first2=Ilya |last3=Hinton |first3=Geoffrey E. |date=
==Comparison of activation functions==
Line 12 ⟶ 13:
; Nonlinear: When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator.<ref>{{Cite journal|author1-link=George Cybenko|last=Cybenko|first=G.|date=December 1989|title=Approximation by superpositions of a sigmoidal function|journal=Mathematics of Control, Signals, and Systems|language=en|volume=2|issue=4|pages=303–314|doi=10.1007/BF02551274|bibcode=1989MCSS....2..303C |s2cid=3958369|issn=0932-4194|url=https://hal.archives-ouvertes.fr/hal-03753170/file/Cybenko1989.pdf }}</ref> This is known as the [[Universal approximation theorem|Universal Approximation Theorem]]. The identity activation function does not satisfy this property. When multiple layers use the identity activation function, the entire network is equivalent to a single-layer model.
; Range: When the range of the activation function is finite, gradient-based training methods tend to be more stable, because pattern presentations significantly affect only limited weights. When the range is infinite, training is generally more efficient because pattern presentations significantly affect most of the weights. In the latter case, smaller [[learning rate]]s are typically necessary.{{citation needed|date=January 2016}}
; Continuously differentiable: This property is desirable for enabling gradient-based optimization methods ([[Rectifier (neural networks)|ReLU]] is not continuously differentiable and has some issues with gradient-based optimization, but it is still possible)
These properties do not decisively influence performance, nor are they the only mathematical properties that may be useful. For instance, the strictly positive range of the [[softplus]] makes it suitable for predicting variances in [[Autoencoder#Variational autoencoder (VAE)|variational autoencoders]].
== Mathematical details ==
The most common activation functions can be divided into three categories: [[ridge function]]s, [[radial function]]s and [[fold function]]s.
An activation function <math>f</math> is '''saturating''' if <math>\lim_{|v|\to \infty} |\nabla f(v)| = 0</math>. It is '''nonsaturating''' if
=== Ridge activation functions ===
Line 30 ⟶ 31:
* [[logistic function|Logistic]] activation: <math>\phi(\mathbf v) = (1+\exp(-a-\mathbf v'\mathbf b))^{-1}</math>.
In [[Biological neural network|biologically inspired neural networks]], the activation function is usually an abstraction representing the rate of [[action potential]] firing in the cell.<ref>{{Cite journal|last1=Hodgkin|first1=A. L.|last2=Huxley|first2=A. F.|date=
The function looks like <math>\phi(\mathbf v)=U(a + \mathbf v'\mathbf b)</math>, where <math>U</math> is the [[Heaviside step function]].
Line 50 ⟶ 51:
Periodic functions can serve as activation functions. Usually the [[Sine wave|sinusoid]] is used, as any periodic function is decomposable into sinusoids by the [[Fourier transform]].<ref>{{Cite journal |last1=Sitzmann |first1=Vincent |last2=Martel |first2=Julien |last3=Bergman |first3=Alexander |last4=Lindell |first4=David |last5=Wetzstein |first5=Gordon |date=2020 |title=Implicit Neural Representations with Periodic Activation Functions |url=https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.html |journal=Advances in Neural Information Processing Systems |publisher=Curran Associates, Inc. |volume=33 |pages=7462–7473|arxiv=2006.09661 }}</ref>
Quadratic activation maps <math>x \mapsto x^2</math>.<ref>{{Citation |last=Flake |first=Gary William |title=Square Unit Augmented Radially Extended Multilayer Perceptrons |date=1998 |work=Neural Networks: Tricks of the Trade |series=Lecture Notes in Computer Science |volume=1524 |pages=145–163 |editor-last=Orr |editor-first=Genevieve B. |url=https://link.springer.com/chapter/10.1007/3-540-49430-8_8 |access-date=5 October 2024
=== Folding activation functions ===
{{Main|Fold function}}
Folding activation functions are extensively used in the [[Pooling layer|pooling layers]] in [[convolutional neural network]]s, and in output layers of [[multiclass classification]] networks. These activations perform [[Aggregate function|aggregation]] over the inputs, such as taking the [[mean]], [[minimum]] or [[maximum]]. In multiclass classification the [[Softmax function|softmax]] activation is often used.
=== Table of activation functions ===
Line 145 ⟶ 146:
| <math>C^\infty</math>
|-
| [[Rectifier (neural networks)#ELU|Exponential linear unit (ELU)]]<ref>{{Cite arXiv|last1=Clevert|first1=Djork-Arné|last2=Unterthiner|first2=Thomas|last3=Hochreiter|first3=Sepp|date=
| [[File:Activation elu.svg]]
| <math>\begin{cases}
Line 162 ⟶ 163:
\end{cases}</math>
|-
| Scaled exponential linear unit (SELU)<ref>{{Cite journal |last1=Klambauer |first1=Günter |last2=Unterthiner |first2=Thomas |last3=Mayr |first3=Andreas |last4=Hochreiter |first4=Sepp |date=8 June 2017
| [[File:Activation selu.png]]
| <math>\lambda \begin{cases}
Line 189 ⟶ 190:
| <math>C^0</math>
|-
| Parametric rectified linear unit (PReLU)<ref>{{Cite arXiv |last1=He |first1=Kaiming |last2=Zhang |first2=Xiangyu |last3=Ren |first3=Shaoqing |last4=Sun |first4=Jian |date=6 February 2015
| [[File:Activation prelu.svg]]
| <math>\begin{cases}
Line 215 ⟶ 216:
|title = Elsevier Pattern Recognition
|date = 2023
|volume=160 |pages=12–21 |doi=10.1016/j.neunet.2022.12.019 |pmid=36592526 |arxiv=2101.09948}}</ref>
| <math> - </math>
| <math>(-\infty,+\infty)</math>
Line 234 ⟶ 235:
| <math>C^\infty</math>
|-
|Exponential Linear Sigmoid SquasHing (ELiSH)<ref>{{Citation |last1=Basirat |first1=Mina |title=The Quest for the Golden Activation Function |date=2 August 2018
|[[File:Elish_activation_function.png|thumb|An image of the ELiSH activation function plotted over the range [-3, 3] with a minumum value of ~0.881 at x ~= -0.172
|<math>\begin{cases}
\frac{e^x - 1}{1 + e^{-x}} & \text{if } x < 0 \\
Line 302 ⟶ 303:
== Further reading ==
* {{Citation |last1=Kunc |first1=Vladimír |title=Three Decades of Activations: A Comprehensive Survey of 400 Activation Functions for Neural Networks |date=
* {{cite arXiv |last1=Nwankpa |first1=Chigozie |title=Activation Functions: Comparison of trends in Practice and Research for Deep Learning |date=8 November 2018
* {{cite journal |last1=Dubey |first1=Shiv Ram |last2=Singh |first2=Satish Kumar |last3=Chaudhuri |first3=Bidyut Baran |year=2022 |title=Activation functions in deep learning: A comprehensive survey and benchmark |journal=Neurocomputing |publisher=Elsevier BV |volume=503 |pages=92–108 |doi=10.1016/j.neucom.2022.06.111 |issn=0925-2312 |doi-access=free|arxiv=2109.14545 }}
|