Content deleted Content added
→Symbolic method: explicit computation of the generating series |
rv: unsourced and not obviously relevant. Maybe you can start a talk page discussion explaining why you want to add this. |
||
(27 intermediate revisions by 17 users not shown) | |||
Line 201:
=== Limit of consecutive quotients ===
[[Johannes Kepler]] observed that the ratio of consecutive Fibonacci numbers [[convergent sequence|converges]]. He wrote that "as 5 is to 8 so is 8 to 13, practically, and as 8 is to 13, so is 13 to 21 almost", and concluded that these ratios approach the golden ratio
<math display=block>\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\varphi.</math>
Line 359:
[[File:Fibonacci Squares.svg|frameless|260x260px]]
=== Induction proofs ===
Line 802 ⟶ 788:
* [[Mario Merz]] included the Fibonacci sequence in some of his artworks beginning in 1970.{{sfn|Livio|2003|p=176}}
* [[Joseph Schillinger]] (1895–1943) developed [[Schillinger System|a system of composition]] which uses Fibonacci intervals in some of its melodies; he viewed these as the musical counterpart to the elaborate harmony evident within nature.{{sfn|Livio|2003|p=193}} See also {{slink|Golden ratio|Music}}.
* In [[software development]], Fibonacci numbers are often used by [[Agile management|agile]] teams operating under the [[Scrum (software development)|Scrum]] framework to size their [[product backlog]] items.<ref>{{cite web |last1=Kathuria |first1=Madhur |title=A Guide to Using the Fibonacci Sequence in Scrum |url=https://resources.scrumalliance.org/Article/guide-using-fibonacci-sequence-scrum |website=Scrum Alliance |access-date=8 August 2025}}</ref>
== See also ==
|