Content deleted Content added
Tag: Reverted |
rv: unsourced and not obviously relevant. Maybe you can start a talk page discussion explaining why you want to add this. |
||
(22 intermediate revisions by 14 users not shown) | |||
Line 23:
Under some older definitions, the value <math>F_0 = 0</math> is omitted, so that the sequence starts with <math>F_1=F_2=1,</math> and the recurrence <math>F_n=F_{n-1} + F_{n-2}</math> is valid for {{math|''n'' > 2}}.{{Sfn | Beck | Geoghegan | 2010}}{{Sfn | Bóna | 2011 | p=180}} <!--Fibonacci started the sequence with index 0: {{math|<sub>0</sub>→1, <sub>1</sub>→2, <sub>2</sub>→3, ..., <sub>12</sub>→377}}.<ref>{{citation |last1=Leonardo da Pisa |title=File:Liber abbaci magliab f124r.jpg - Wikimedia Commons |date=1202 |url=https://commons.wikimedia.org/wiki/File:Liber_abbaci_magliab_f124r.jpg |language=en}}</ref>-->
The first
:{| class="wikitable" style="text-align:right"
! {{math|''
! {{math|''F''<sub>
! {{math|''
! {{math|''F''<sub>
! {{math|''
! {{math|''F''<sub>
! {{math|''
! {{math|''F''<sub>
! {{math|''F''<sub>8</sub>}}
! {{math|''F''<sub>9</sub>}}
! {{math|''F''<sub>10</sub>}}
! {{math|''F''<sub>11</sub>}}
! {{math|''F''<sub>12</sub>}}
! {{math|''F''<sub>13</sub>}}
! {{math|''F''<sub>14</sub>}}
! {{math|''F''<sub>15</sub>}}
! {{math|''F''<sub>16</sub>}}
! {{math|''F''<sub>17</sub>}}
! {{math|''F''<sub>18</sub>}}
! {{math|''F''<sub>19</sub>}}
|-
| 0
| 1
| 1
| 2
| 3
| 5
| 8
| 13
| 21
| 34
| 55
| 89
| 144
| 233
| 377
| 610
| 987
|
| 2584
|
|}
Line 393 ⟶ 201:
=== Limit of consecutive quotients ===
[[Johannes Kepler]] observed that the ratio of consecutive Fibonacci numbers [[convergent sequence|converges]]. He wrote that "as 5 is to 8 so is 8 to 13, practically, and as 8 is to 13, so is 13 to 21 almost", and concluded that these ratios approach the golden ratio
<math display=block>\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\varphi.</math>
Line 980 ⟶ 788:
* [[Mario Merz]] included the Fibonacci sequence in some of his artworks beginning in 1970.{{sfn|Livio|2003|p=176}}
* [[Joseph Schillinger]] (1895–1943) developed [[Schillinger System|a system of composition]] which uses Fibonacci intervals in some of its melodies; he viewed these as the musical counterpart to the elaborate harmony evident within nature.{{sfn|Livio|2003|p=193}} See also {{slink|Golden ratio|Music}}.
* In [[software development]], Fibonacci numbers are often used by [[Agile management|agile]] teams operating under the [[Scrum (software development)|Scrum]] framework to size their [[product backlog]] items.<ref>{{cite web |last1=Kathuria |first1=Madhur |title=A Guide to Using the Fibonacci Sequence in Scrum |url=https://resources.scrumalliance.org/Article/guide-using-fibonacci-sequence-scrum |website=Scrum Alliance |access-date=8 August 2025}}</ref>
== See also ==
|