Fibonacci sequence: Difference between revisions

Content deleted Content added
m Reverted 1 edit by 2A00:1FA1:1AF:8B36:0:49:BDB:FD01 (talk) to last revision by D.Lazard
rv: unsourced and not obviously relevant. Maybe you can start a talk page discussion explaining why you want to add this.
 
(21 intermediate revisions by 14 users not shown)
Line 201:
 
=== Limit of consecutive quotients ===
[[Johannes Kepler]] observed that the ratio of consecutive Fibonacci numbers [[convergent sequence|converges]]. He wrote that "as 5 is to 8 so is 8 to 13, practically, and as 8 is to 13, so is 13 to 21 almost", and concluded that these ratios approach the golden ratio <math>{{tmath|\varphi\colon </math> }}:<ref>{{Citation|last=Kepler |first=Johannes |title=A New Year Gift: On Hexagonal Snow |year=1966 |isbn=978-0-19-858120-8 |publisher=Oxford University Press |page= 92}}</ref><ref>{{Citation | title = Strena seu de Nive Sexangula | year = 1611}}</ref>
<math display=block>\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\varphi.</math>
 
Line 788:
* [[Mario Merz]] included the Fibonacci sequence in some of his artworks beginning in 1970.{{sfn|Livio|2003|p=176}}
* [[Joseph Schillinger]] (1895–1943) developed [[Schillinger System|a system of composition]] which uses Fibonacci intervals in some of its melodies; he viewed these as the musical counterpart to the elaborate harmony evident within nature.{{sfn|Livio|2003|p=193}} See also {{slink|Golden ratio|Music}}.
* In [[software development]], Fibonacci numbers are often used by [[Agile management|agile]] teams operating under the [[Scrum (software development)|Scrum]] framework to size their [[product backlog]] items.<ref>{{cite web |last1=Kathuria |first1=Madhur |title=A Guide to Using the Fibonacci Sequence in Scrum |url=https://resources.scrumalliance.org/Article/guide-using-fibonacci-sequence-scrum |website=Scrum Alliance |access-date=8 August 2025}}</ref>
 
== See also ==