Joback method: Difference between revisions

Content deleted Content added
m Fix tone of this description
 
(20 intermediate revisions by 11 users not shown)
Line 1:
{{Short description|Thermodynamic model}}
The '''Joback method'''<ref>Joback K. G., Reid R. C., "Estimation of Pure-Component Properties from Group-Contributions", ''Chem. Eng. Commun.'', 57, 233–243, 1987.</ref> (often named '''Joback/Reid method''') [[Prediction|predicts]] eleven important and commonly used pure component thermodynamic properties from molecular structure only.
The '''Joback method''', often named '''Joback–Reid method''', [[Prediction|predicts]] eleven important and commonly used pure component thermodynamic properties from molecular structure only. It is named after Kevin G. Joback in 1984<ref>{{cite thesis|last=Joback |first=K. G.|date=1984 |title=A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques |url=https://dspace.mit.edu/bitstream/handle/1721.1/15374/12352302-MIT.pdf?sequence=2 |type=MS |publisher=Massachusetts Institute of Technology}}</ref> and developed it further with Robert C. Reid.<ref>Joback K. G., Reid R. C., "Estimation of Pure-Component Properties from Group-Contributions", ''Chem. Eng. Commun.'', 57, 233–243, 1987.</ref> The Joback method is an extension of the [[Lydersen method]]<ref>Lydersen A. L., "Estimation of Critical Properties of Organic Compounds", University of Wisconsin College Engineering, ''Eng. Exp. Stn. Rep.'' 3, Madison, Wisconsin, 1955.</ref> and uses very similar groups, formulas, and parameters for the three properties the Lydersen already supported ([[critical temperature]], [[critical pressure]], critical volume).
 
Joback and Reid extended the range of supported properties, created new parameters and modified slightly the formulas of the old Lydersen method.
 
== Basic principles ==
Line 5 ⟶ 8:
=== Group-contribution method ===
 
[[Image:Gruppenbeitragsmethodenprinzip.pngsvg|thumb|Principle of a group-contribution method]]
The Joback method is a [[group-contribution method]]. These kinds of methods use basic structural information of a chemical molecule, like a list of simple functional groups, add parameters to these functional groups, and calculate thermophysical and transport properties as a function of the sum of group parameters.
 
Line 12 ⟶ 15:
Nine of the properties are single temperature-independent values, mostly estimated by a simple sum of group contribution plus an addend.
Two of the estimated properties are temperature-dependent: the ideal-gas [[heat capacity]] and the dynamic [[viscosity]] of liquids. The heat-capacity [[polynomial]] uses 4 parameters, and the viscosity equation only 2. In both cases the equation parameters are calculated by group contributions.
 
=== History ===
 
The Joback method is an extension of the [[Lydersen method]]<ref>Lydersen A. L., "Estimation of Critical Properties of Organic Compounds", University of Wisconsin College Engineering, ''Eng. Exp. Stn. Rep.'' 3, Madison, Wisconsin, 1955.</ref> and uses very similar groups, formulas, and parameters for the three properties the Lydersen already supported ([[critical temperature]], [[critical pressure]], critical volume).
 
Joback extended the range of supported properties, created new parameters and modified slightly the formulas of the old Lydersen method.
 
==Model strengths and weaknesses==
Line 39 ⟶ 36:
 
== Formulas ==
In the following formulas ''G''<sub>i</sub>'' denotes a group contribution. ''G''<sub>i</sub>'' are counted for every single available group. If a group is present multiple times, each occurrence is counted separately.
 
===Normal boiling point===
 
<math>T_\text{b}[\text{K}] = 198.2 + \sum T_{\text{b},i}.</math>
 
===Melting point===
 
<math>T_\text{m}[\text{K}] = 99122.5 + \sum T_{\text{m},i}.</math>
 
===Critical temperature===
Line 53 ⟶ 50:
<math>T_\text{c}[\text{K}] = T_\text{b} \left[0.584 + 0.965 \sum T_{\text{c},i} - \left(\sum T_{\text{c},i}\right)^2 \right]^{-1}.</math>
 
This critical -temperature equation needs a normal boiling point ''T''<sub>b</sub>. If an experimental value is available, it is recommended to use this boiling point. It is, on the other hand, also possible to input the normal boiling point estimated by the Joback method. This will lead to a higher error.
 
===Critical pressure===
Line 59 ⟶ 56:
<math>P_\text{c}[\text{bar}] = \left [0.113 + 0.0032 \, N_\text{a} - \sum P_{\text{c},i}\right ]^{-2},</math>
 
where ''N''<sub>a</sub> is the number of atoms in the molecular structure (including hydrogens).
 
===Critical volume===
Line 77 ⟶ 74:
<math>C_P[\text{J}/(\text{mol}\cdot\text{K})] = \sum a_i - 37.93 + \left[ \sum b_i + 0.210 \right] T + \left[ \sum c_i - 3.91 \cdot 10^{-4} \right] T^2 + \left[\sum d_i + 2.06 \cdot 10^{-7}\right] T^3.</math>
 
The Joback method uses a four-parameter polynomial to describe the temperature dependency of the ideal-gas heat capacity. These parameters are valid from 273&nbsp;K to about 1000&nbsp;K. This can be extended to 1500K with some degree of uncertainty.
 
===Heat of vaporization at normal boiling point===
Line 89 ⟶ 86:
===Liquid dynamic viscosity===
 
<math>\eta_\text{L}[\text{Pa}\cdot\text{s}] = M_\text{w} e^exp{ \left([ \left(\sum \eta_a - 597.82 \right]) / T) + \sum \eta_b - 11.202\right] },</math>
 
where ''M''<sub>w</sub> is the [[molecular weight]].
Line 113 ⟶ 110:
! ''H''<sub>fusion</sub>
! ''H''<sub>vap</sub>
! ''η<sub>a</sub>''
! ''η<sub>b</sub>''
 
|-
Line 935 ⟶ 932:
| <div align="right">192.0000</div>
| <div align="right">209.5000</div>
| <div align="right">cm3mL/mol</div>
 
|-
Line 978 ⟶ 975:
 
|-
| ''C''<sub>pap</sub>: ''a''
| <div align="right">2</div>
| <div align="right">1.95E+01</div>
Line 987 ⟶ 984:
 
|-
| ''C''<sub>pbp</sub>: ''b''
| <div align="right">2</div>
| <div align="right">−8.08E−03</div>
Line 996 ⟶ 993:
 
|-
| ''C''<sub>pcp</sub>: ''c''
| <div align="right">2</div>
| <div align="right">1.53E−04</div>
Line 1,005 ⟶ 1,002:
 
|-
| ''C''<sub>pdp</sub>: ''d''
| <div align="right">2</div>
| <div align="right">−9.67E−08</div>
Line 1,015 ⟶ 1,012:
|-
| ''C''<sub>p</sub>
| colspan="5" | <div align="right">at ''T'' = 300 &nbsp;K</div>
| <div align="right">75.3264</div>
| <div align="right">J/(mol*·K) </div>
 
|-
Line 1,036 ⟶ 1,033:
| <div align="right">8.9720</div>
| <div align="right">13.7180</div>
| <div align="right">29.0180180</div>
| <div align="right">kJ/mol</div>
 
|-
| ''η<sub>a</sub>''
| <div align="right">2</div>
| <div align="right">548.2900</div>
Line 1,049 ⟶ 1,046:
 
|-
| ''η<sub>b</sub>''
| <div align="right">2</div>
| <div align="right">−1.7190</div>
Line 1,058 ⟶ 1,055:
 
|-
| ''η''
| colspan="5" | <div align="right">at ''T'' = 300 &nbsp;K</div>
| <div align="right">0.0002942</div>
| <div align="right">Pa ·s</div>
 
|}
Line 1,073 ⟶ 1,070:
* [http://ddbonline.ddbst.de/OnlinePropertyEstimation/OnlinePropertyEstimation.exe Online property estimation with the Joback method]
 
 
 
[[Category:Physical chemistry]]
[[Category:Thermodynamic models]]