Content deleted Content added
Undid revision 1275166756 by Jacobolus (talk) and restoring the anchors, although they are not used in Euler's formula |
m →Complex exponential: use z instead of x |
||
(47 intermediate revisions by 26 users not shown) | |||
Line 23:
}}
In [[mathematics]], the '''exponential function''' is the unique [[real function]] which maps [[0|zero]] to [[1|one]] and has a [[derivative (mathematics)|derivative]] everywhere equal to its value. The exponential of a variable {{tmath|x}} is denoted {{tmath|\exp x}} or {{tmath|e^x}}, with the two notations used interchangeably. It is called ''exponential'' because its argument can be seen as an [[exponent (mathematics)|exponent]] to which a constant [[e (mathematical constant)|number {{math|''e'' ≈ 2.718}}]], the base, is raised. There are several other definitions of the exponential function, which are all equivalent although being of very different nature.
The exponential function converts sums to products: it maps the [[additive identity]] {{math|0}} to the [[multiplicative identity]] {{math|1}}, and the exponential of a sum is equal to the product of separate exponentials, {{tmath|1=\exp(x + y) = \exp x \cdot \exp y }}. Its [[inverse function]], the [[natural logarithm]], {{tmath|\ln}} or {{tmath|\log}}, converts products to sums: {{tmath|1= \ln(x\cdot y) = \ln x + \ln y}}.
The exponential function is occasionally called the '''natural exponential function''', matching the name ''natural logarithm'', for distinguishing it from some other functions that are also commonly called ''exponential functions''. These functions include the functions of the form {{tmath|1=f(x) = b^x}}, which is [[exponentiation]] with a fixed base {{tmath|b}}. More generally, and especially in applications, functions of the general form {{tmath|1=f(x) = ab^x}} are also called exponential functions. They [[exponential growth|grow]] or [[exponential decay|decay]] exponentially in that the
The exponential function can be generalized to accept [[complex number]]s as arguments. This reveals relations between multiplication of complex numbers, rotations in the [[complex plane]], and [[trigonometry]]. [[Euler's formula]] {{tmath|1= \exp i\theta = \cos\theta + i\sin\theta}} expresses and summarizes these relations.
Line 66:
&=\sum_{n=0}^\infty \frac{x^n}{n!},\end{align}</math>
[[Image:Exp series.gif|right|thumb|The exponential function (in blue), and the sum of the first {{math|''n'' + 1}} terms of its power series (in red)]]
where <math>n!</math> is the [[factorial]] of {{mvar|n}} (the product of the {{mvar|n}} first positive integers). This series is [[absolutely convergent]] for every <math>x</math> per the [[ratio test]]. So, the derivative of the sum can be computed by term-by-term
===Functional equation===
''The exponential satisfies the [[functional equation]]:''
<math display=block>\exp(x+y)= \exp(x)\cdot \exp(y).</math>
This results from the uniqueness and the fact that the function
Line 77:
===Limit of integer powers===
''The exponential function is the [[limit (mathematics)|limit]], as the integer {{mvar|n}} goes to infinity,<ref name="Maor"/><ref name=":0" />
<math display=block>\exp(x)=\lim_{n \to +\infty} \left(1+\frac xn\right)^n
<math display=block>x=\lim_{n\to\infty}\ln \left(1+\frac xn\right)^n= \lim_{n\to\infty}n\ln \left(1+\frac xn\right),</math>
for example with [[Taylor's theorem]].
Line 114:
The last characterization is important in [[empirical science]]s, as allowing a direct [[experimental]] test whether a function is an exponential function.
Exponential [[exponential growth|growth]] or [[exponential decay]]{{mdash}}where the
If the modeling function has the form {{tmath|x\mapsto ae^{kx},}} or, equivalently, is a solution of the differential equation {{tmath|1=y'=ky}}, the constant {{tmath|k}} is called, depending on the context, the ''decay constant'', ''disintegration constant'',<ref name="Serway-Moses-Moyer_1989" /> ''rate constant'',<ref name="Simmons_1972" /> or ''transformation constant''.<ref name="McGrawHill_2007" />
===Equivalence proof===
For proving the equivalence of the above
The two first characterizations are equivalent, since, if {{tmath|1=b=e^k}} and {{tmath|1= k=\ln b}}, one has
The basic properties of the exponential function (derivative and functional equation) implies immediately the third and
Suppose that the third condition is verified, and let {{tmath|k}} be the constant value of <math>f'(x)/f(x).</math> Since <math display = inline>\frac {\partial e^{kx}}{\partial x}=ke^{kx},</math> the [[quotient rule]] for derivation
Line 160:
where {{tmath|c}} is an arbitrary constant and the integral denotes any [[antiderivative]] of its argument.
More
==Complex exponential==
{{anchor|On the complex plane|Complex plane}}
[[File:The exponential function e^z plotted in the complex plane from -2-2i to 2+2i.svg|alt=The exponential function {{math|''e
[[Image:Exp-complex-cplot.svg|thumb|right|A [[Domain coloring|complex plot]] of <math>z\mapsto\exp z</math>, with the [[Argument (complex analysis)|argument]] <math>\operatorname{Arg}\exp z</math> represented by varying hue. The transition from dark to light colors shows that <math>\left|\exp z\right|</math> is increasing only to the right. The periodic horizontal bands corresponding to the same hue indicate that <math>z\mapsto\exp z</math> is [[periodic function|periodic]] in the [[imaginary part]] of <math>z</math>.]]
Line 174:
The ''complex exponential'' is the unique complex function that equals its [[complex derivative]] and takes the value {{tmath|1}} for the argument {{tmath|0}}:
<math display="block">\frac{de^z}{dz}=e^z\quad\text{
The ''complex exponential function'' is the sum of the [[series (mathematics)|series]]
Line 183:
<math display="block">e^z = \lim_{n\to\infty}\left(1+\frac{z}{n}\right)^n</math>
As with the real exponential function (see {{slink||Functional equation}} above), the complex exponential satisfies the functional equation
<math display=
Among complex functions, it is the unique solution which is [[holomorphic]] at the point {{tmath|1= z = 0}} and takes the derivative {{tmath|1}} there.<ref>{{cite book |last=Hille |first=Einar |year=1959 |title=Analytic Function Theory |volume=1 |place=Waltham, MA |publisher=Blaisdell |chapter=The exponential function |at=§ 6.1, {{pgs|138–143}} }}</ref>
The [[complex logarithm]] is a [[left inverse function|right-inverse function ]] of the complex exponential:
However, since the complex logarithm is a [[multivalued function]], one has
<math display="block">\
and it is difficult to define the complex exponential from the complex logarithm. On the opposite, this is the complex logarithm that is often defined from the complex exponential.
The complex exponential has the following properties:
and
<math display="block">e^z\
It is [[periodic function|periodic function]] of period {{tmath|2i\pi}}; that is
<math display="block">e^{z+2ik\pi} =e^z \quad \text{for every } k\in \Z.</math>
This results from [[Euler's identity]] {{tmath|1=e^{i\pi}=-1}} and the functional identity.
The [[complex conjugate]] of the complex exponential is
<math display="block">\
Its modulus is
<math display="block">|e^z|= e^{\Re (z)},</math>
where {{tmath|\Re(z)}} denotes the real part of {{tmath|z}}.
===Relationship with trigonometry===
<math display="block">
This formula provides the decomposition of complex exponentials into [[real and imaginary parts]]:
<math display="block">
\end{align}</math>▼
The trigonometric functions can be expressed in terms of complex exponentials:
▲for all <math display=inline> z\in\mathbb{C}.</math>
▲These definitions for the exponential and trigonometric functions lead trivially to [[Euler's formula]]:
▲<math display="block">\exp(iz)=\cos z+i\sin z \text { for all } z\in\mathbb{C}.</math>
▲<math display="block">\exp z = \exp(x+iy) := (\exp x)(\cos y + i \sin y)</math>
▲<math display="block">\int_0^{t_0}|\gamma'(t)| \, dt = \int_0^{t_0} |i\exp(it)| \, dt = t_0,</math>
<math display="block">\begin{align}
\cos
\sin x &= \frac{e^{ix}-e^{-ix}}{2i}\\
\tan x &= i\,\frac{1-e^{2ix}}{1+e^{2ix}}
▲<math display="block">z^w = e^{w \log z}</math>
In these formulas, {{tmath|x, y, t}} are commonly interpreted as real variables, but the formulas remain valid if the variables are interpreted as complex variables. These formulas may be used to define trigonometric functions of a complex variable.<ref name="Apostol_1974"/>
===Plots===
<gallery caption="3D plots of real part, imaginary part, and modulus of the exponential function" class="center" mode="packed" style="text-align:left" heights="150px">
Image:ExponentialAbs_real_SVG.svg| {{math|1=''z'' = Re(''e''
Image:ExponentialAbs_image_SVG.svg| {{math|1=''z'' = Im(''e''
Image:ExponentialAbs_SVG.svg| {{math|1=''z'' = {{abs|''e''
</gallery>
Line 275 ⟶ 260:
==Matrices and Banach algebras==
The power series definition of the exponential function makes sense for square [[matrix (mathematics)|matrices]] (for which the function is called the [[matrix exponential]]) and more generally in any unital [[Banach algebra]] {{math|''B''}}. In this setting, {{math|1=''e''
Some alternative definitions lead to the same function. For instance, {{math|''e''
<math display="block">\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n .</math>
Or {{math|''e''
==Lie algebras==
Line 288 ⟶ 273:
==Transcendency==
The function {{math|''e''
If {{math|''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub><nowiki/>}} are distinct complex numbers, then {{math|''e''<sup>''a''<sub>1</sub>''z''</sup>, ..., ''e''<sup>''a''<sub>''n''</sub>''z''</sup><nowiki/>}} are linearly independent over <math>\C(z)</math>, and hence {{math|''e''
=={{anchor|exp|expm1}}Computation==
The Taylor series definition above is generally efficient for computing (an approximation of) <math>e^x</math>. However, when computing near the argument <math>x=0</math>, the result will be close to 1, and computing the value of the difference <math>e^x-1</math> with [[floating-point arithmetic]] may lead to the loss of (possibly all) [[significant figures]], producing a large relative error, possibly even a meaningless result.
Following a proposal by [[William Kahan]], it may thus be useful to have a dedicated routine, often called <code>expm1</code>, which computes {{math|''e<sup>x</sup>'' − 1}} directly, bypassing computation of {{math|''e''
one may use the Taylor series:
<math display="block">e^x-1=x+\frac {x^2}2 + \frac{x^3}6+\cdots +\frac{x^n}{n!}+\cdots.</math>
Line 312 ⟶ 297:
The exponential function can also be computed with [[continued fraction]]s.
A continued fraction for {{math|''e''
<math display="block"> e^x = 1 + \cfrac{x}{1 - \cfrac{x}{x + 2 - \cfrac{2x}{x + 3 - \cfrac{3x}{x + 4 - \ddots}}}}</math>
The following [[generalized continued fraction]] for {{math|''e''
<math display="block"> e^z = 1 + \cfrac{2z}{2 - z + \cfrac{z^2}{6 + \cfrac{z^2}{10 + \cfrac{z^2}{14 + \ddots}}}}</math>
Line 348 ⟶ 333:
==References==
{{reflist|refs=
<!-- <ref name="Rudin_1976">{{Cite book |title=Principles of Mathematical Analysis |author-last=Rudin |author-first=Walter |publisher=[[McGraw-Hill]] |date=1976 |isbn=978-0-07-054235-8 |___location=New York |pages=182 |url=https://archive.org/details/PrinciplesOfMathematicalAnalysis}}</ref> -->
<ref name="Rudin_1987">{{cite book |title=Real and complex analysis |author-last=Rudin |author-first=Walter |date=1987 |publisher=[[McGraw-Hill]] |isbn=978-0-07-054234-1 |edition=3rd |___location=New York |page=1 |url=https://archive.org/details/RudinW.RealAndComplexAnalysis3e1987}}</ref>
<ref name="Maor">{{cite book |author-first=Eli |author-last=Maor |author-link=Eli Maor |title=e: the Story of a Number |page=156}}</ref>
|