Exponential function: Difference between revisions

Content deleted Content added
Undid revision 1295921430 by 2600:1700:A410:C4E0:A48F:F30C:4B6E:7354 (talk) There are ways to make that true, but there are also ways to make that false. Unless we add some verbiage to distinguish the cases, we should stay away from that quagmire
m Complex exponential: use z instead of x
 
(13 intermediate revisions by 8 users not shown)
Line 69:
 
===Functional equation===
''The exponential satisfies the [[functional equation]]:''
<math display=block>\exp(x+y)= \exp(x)\cdot \exp(y).</math>
This results from the uniqueness and the fact that the function
Line 183:
<math display="block">e^z = \lim_{n\to\infty}\left(1+\frac{z}{n}\right)^n</math>
 
As with the real exponential function (see {{slink||Functional equation}} above), the complex exponential satisfies the functional equation
The functional equation
<math display="block">e^{w+\exp(z}+w)=e^we^ \exp(z)\cdot \exp(w).</math>
Among complex functions, it is the unique solution which is [[holomorphic]] at the point {{tmath|1= z = 0}} and takes the derivative {{tmath|1}} there.<ref>{{cite book |last=Hille |first=Einar |year=1959 |title=Analytic Function Theory |volume=1 |place=Waltham, MA |publisher=Blaisdell |chapter=The exponential function |at=§ 6.1, {{pgs|138–143}} }}</ref>
holds for every complex numbers {{tmath|w}} and {{tmath|z}}. The complex exponential is the unique [[continuous function]] that satisfies this functional equation and has the value {{tmath|1}} for {{tmath|1=z=0}}.
 
The [[complex logarithm]] is a [[left inverse function|right-inverse function ]] of the complex exponential:
Line 204:
<math display="block">\overline{e^z}=e^{\overline z}.</math>
Its modulus is
<math display="block">|e^z|= e^{|\Re (z)|},</math>
where {{tmath|\Re(z)}} denotes the real part of {{tmath|z}}.
 
Line 211:
<math display="block">e^{it} =\cos(t)+i\sin(t). </math>
 
This formula provides the decomposition of complex exponentialexponentials into [[real and imaginary parts]]:
<math display="block">e^{x+iy} = e^{x}e^{iy} = e^x\,\cos y + i e^x\,\sin y.</math>
 
The trigonometric functions can be expressed in terms of complex exponentials: