Exponential function: Difference between revisions

Content deleted Content added
both links leads to the same article.
Tags: Reverted Visual edit
m Complex exponential: use z instead of x
 
(10 intermediate revisions by 6 users not shown)
Line 1:
{{Short description|Mathematical function, denoted exp(x) or e^x}}
{{About|the function {{math|{{var|f}}({{var|x}}) {{=}} {{var|e}}{{sup|{{var|x}}}}}} and its generalizations|functions of the form {{math|{{var|f}}({{var|x}}) {{=}} {{var|x}}{{sup|{{var|r}}}}}}|Power or function|the bivariate function {{math|{{var|f}}({{var|x}},{{var|y}}) {{=}} {{var|x}}{{sup|{{var|y}}}}}}|Exponentiation|the representation of scientific numbers|E notation}}
{{Use dmy dates|date=August 2019|cs1-dates=y}}
{{Infobox mathematical function
Line 69:
 
===Functional equation===
''The exponential satisfies the [[functional equation]]:''
<math display=block>\exp(x+y)= \exp(x)\cdot \exp(y).</math>
This results from the uniqueness and the fact that the function
Line 183:
<math display="block">e^z = \lim_{n\to\infty}\left(1+\frac{z}{n}\right)^n</math>
 
As with the real exponential function (see {{slink||Functional equation}} above), the complex exponential satisfies the functional equation
The functional equation
<math display="block">e^{w+\exp(z}+w)=e^we^ \exp(z)\cdot \exp(w).</math>
Among complex functions, it is the unique solution which is [[holomorphic]] at the point {{tmath|1= z = 0}} and takes the derivative {{tmath|1}} there.<ref>{{cite book |last=Hille |first=Einar |year=1959 |title=Analytic Function Theory |volume=1 |place=Waltham, MA |publisher=Blaisdell |chapter=The exponential function |at=§ 6.1, {{pgs|138–143}} }}</ref>
holds for every complex numbers {{tmath|w}} and {{tmath|z}}. The complex exponential is the unique [[continuous function]] that satisfies this functional equation and has the value {{tmath|1}} for {{tmath|1=z=0}}.
 
The [[complex logarithm]] is a [[left inverse function|right-inverse function ]] of the complex exponential:
Line 204:
<math display="block">\overline{e^z}=e^{\overline z}.</math>
Its modulus is
<math display="block">|e^z|= e^{|\Re (z)|},</math>
where {{tmath|\Re(z)}} denotes the real part of {{tmath|z}}.
 
Line 211:
<math display="block">e^{it} =\cos(t)+i\sin(t). </math>
 
This formula provides the decomposition of complex exponentialexponentials into [[real and imaginary parts]]:
<math display="block">e^{x+iy} = e^{x}e^{iy} = e^x\,\cos y + i e^x\,\sin y.</math>
 
The trigonometric functions can be expressed in terms of complex exponentials: