Order-8-3 triangular honeycomb: Difference between revisions

Content deleted Content added
m Order-8-3 apeirogonal honeycomb: added missing diacritic
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(15 intermediate revisions by 8 users not shown)
Line 8:
|bgcolor=#e8dcc3|[[Coxeter diagram]]s||{{CDD|node_1|3|node|8|node|3|node}}
|-
|bgcolor=#e8dcc3|Cells||[[order-8 triangular tiling|{3,8}]] [[File:H2 tiling 238-48-3-primal.pngsvg|40px]]
|-
|bgcolor=#e8dcc3|Faces||[[Triangle|{3}]]
Line 14:
|bgcolor=#e8dcc3|Edge figure||[[Triangle|{3}]]
|-
|bgcolor=#e8dcc3|Vertex figure||[[octagonal tiling|{8,3}]] [[File:H2 tiling 238-18-3-dual.pngsvg|50px]]
|-
|bgcolor=#e8dcc3|Dual||Self-dual
Line 39:
It is a part of a sequence of self-dual regular honeycombs: {''p'',8,''p''}.
 
{{-Clear}}
 
=== Order-8-4 triangular honeycomb===
Line 51:
|bgcolor=#e8dcc3|[[Coxeter diagram]]s||{{CDD|node_1|3|node|8|node|4|node}}<BR>{{CDD|node_1|3|node|8|node|4|node_h0}} = {{CDD|node_1|3|node|split1-88|nodes}}
|-
|bgcolor=#e8dcc3|Cells||[[order-8 triangular tiling|{3,8}]] [[File:H2 tiling 238-48-3-primal.pngsvg|40px]]
|-
|bgcolor=#e8dcc3|Faces||[[Triangle|{3}]]
Line 76:
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {3,8<sup>1,1</sup>}, Coxeter diagram, {{CDD|node_1|3|node|split1-88|nodes}}, with alternating types or colors of order-8 triangular tiling cells. In [[Coxeter notation]] the half symmetry is [3,8,4,1<sup>+</sup>] = [3,8<sup>1,1</sup>].
 
{{-Clear}}
 
=== Order-8-5 triangular honeycomb===
Line 88:
|bgcolor=#e8dcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|8|node|5|node}}
|-
|bgcolor=#e8dcc3|Cells||[[Order-8 triangular tiling|{3,8}]] [[File:H2 tiling 238-48-3-primal.pngsvg|40px]]
|-
|bgcolor=#e8dcc3|Faces||[[Triangle|{3}]]
Line 109:
|}
 
{{-Clear}}
 
===Order-8-6 triangular honeycomb===
Line 121:
|bgcolor=#e8dcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|8|node|6|node}}<BR>{{CDD|node_1|3|node|8|node|6|node_h0}} = {{CDD|node_1|3|node|split1-88|branch}}
|-
|bgcolor=#e8dcc3|Cells||[[order-8 triangular tiling|{3,8}]] [[File:H2 tiling 238-48-3-primal.pngsvg|40px]]
|-
|bgcolor=#e8dcc3|Faces||[[Triangle|{3}]]
Line 141:
<!--|[[File:H3_386_UHS_plane_at_infinity.png|240px]]<BR>Ideal surface-->
|}
{{-Clear}}
 
===Order-8-infinite triangular honeycomb===
Line 153:
|bgcolor=#e8dcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|8|node|infin|node}}<BR>{{CDD|node_1|3|node|8|node|infin|node_h0}} = {{CDD|node_1|3|node|split1-88|branch|labelinfin}}
|-
|bgcolor=#e8dcc3|Cells||[[order-8 triangular tiling|{3,8}]] [[File:H2 tiling 238-48-3-primal.pngsvg|40px]]
|-
|bgcolor=#e8dcc3|Faces||[[Triangle|{3}]]
Line 176:
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {3,(8,∞,8)}, Coxeter diagram, {{CDD|node_1|3|node|8|node|infin|node_h0}} = {{CDD|node_1|3|node|split1-88|branch|labelinfin}}, with alternating types or colors of order-8 triangular tiling cells. In Coxeter notation the half symmetry is [3,8,∞,1<sup>+</sup>] = [3,((8,∞,8))].
 
{{-Clear}}
 
=== Order-8-3 square honeycomb===
Line 200:
|bgcolor=#e8dcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-8-3 square honeycomb''' (or '''4,8,3 honeycomb''') a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]). Each infinite cell consists of aan [[octagonal tiling]] whose vertices lie on a [[Hypercycle (geometry)|2-hypercycle]], each of which has a limiting circle on the ideal sphere.
 
The [[Schläfli symbol]] of the ''order-8-3 square honeycomb'' is {4,8,3}, with three order-4 octagonal tilings meeting at each edge. The [[vertex figure]] of this honeycomb is an octagonal tiling, {8,3}.
Line 272:
|}
 
{{-Clear}}
 
=== Order-8-3 apeirogonal honeycomb===
Line 284:
|bgcolor=#e8dcc3|[[Coxeter diagram]]||{{CDD|node_1|infin|node|8|node|3|node}}
|-
|bgcolor=#e8dcc3|Cells||[[Order-8 apeirogonal tiling|{&infin;,8}]] [[File:H2_tiling_28i-1.png|80px]]
|-
|bgcolor=#e8dcc3|Faces||[[Apeirogon]] {∞}
Line 290:
|bgcolor=#e8dcc3|[[Vertex figure]]||[[octagonal tiling|{8,3}]]
|-
|bgcolor=#e8dcc3|Dual||[[Order-8-infinite triangular honeycomb|{3,8,&infin;}]]
|-
|bgcolor=#e8dcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[∞,8,3]
Line 300:
The [[Schläfli symbol]] of the apeirogonal tiling honeycomb is {∞,8,3}, with three ''order-8 apeirogonal tilings'' meeting at each edge. The [[vertex figure]] of this honeycomb is an octagonal tiling, {8,3}.
 
The "ideal surface" projection below is a plane-at-infinity, in the Poincaré half-space model of H3. It shows aan [[Apollonian gasket]] pattern of circles inside a largest circle.
 
{| class=wikitable
Line 340:
|}
 
{{-Clear}}
 
=== Order-8-5 pentagonal honeycomb===
Line 374:
<!--|[[File:H3_585_UHS_plane_at_infinity.png|240px]]<BR>Ideal surface-->
|}
{{-Clear}}
 
=== Order-8-6 hexagonal honeycomb===
Line 409:
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {6,(8,3,8)}, Coxeter diagram, {{CDD|node_1|6|node|split1-88|branch}}, with alternating types or colors of cells. In Coxeter notation the half symmetry is [6,8,6,1<sup>+</sup>] = [6,((8,3,8))].
 
{{-Clear}}
 
=== Order-8-infinite apeirogonal honeycomb ===
Line 421:
|bgcolor=#e8dcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|infin|node|8|node|infin|node}}<BR>{{CDD|node_1|infin|node|8|node|infin|node_h0}} ↔ {{CDD|node_1|infin|node|split1-88|branch|labelinfin}}
|-
|bgcolor=#e8dcc3|Cells||[[apeirogonal tiling|{&infin;,8}]] [[File:H2 tiling 28i-1.png|60px]]
|-
|bgcolor=#e8dcc3|Faces||[[Apeirogon|{∞}]]
Line 451:
{{reflist}}
*[[H. S. M. Coxeter|Coxeter]], ''[[Regular Polytopes (book)|Regular Polytopes]]'', 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp.&nbsp;294–296)
* ''The Beauty of Geometry: Twelve Essays'' (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space] {{Webarchive|url=https://web.archive.org/web/20160610043106/http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf |date=2016-06-10 }}) Table III
* [[Jeffrey Weeks (mathematician)|Jeffrey R. Weeks]] ''The Shape of Space, 2nd edition'' {{ISBN|0-8247-0709-5}} (Chapters 16–17: Geometries on Three-manifolds I, II)
* George Maxwell, ''Sphere Packings and Hyperbolic Reflection Groups'', JOURNAL OF ALGEBRA 79,78-97 (1982) [http://www.sciencedirect.com/science/article/pii/0021869382903180]
* Hao Chen, Jean-Philippe Labbé, ''Lorentzian Coxeter groups and Boyd-Maxwell ball packings'', (2013)[https://arxiv.org/abs/1310.8608]
* [https://arxiv.org/abs/1511.02851 Visualizing Hyperbolic Honeycombs arXiv:1511.02851] Roice Nelson, [[Henry Segerman]] (2015)
 
==External links==
* [https://www.youtube.com/watch?v=GRo_FQm2KRc Hyperbolic Catacombs Carousel: {3,7,3} honeycomb] [[YouTube]], Roice Nelson
*[[John Baez]], ''Visual insights'': [http://blogs.ams.org/visualinsight/2014/08/01/733-honeycomb/ {7,3,3} Honeycomb] (2014/08/01) [http://blogs.ams.org/visualinsight/2014/08/14/733-honeycomb-meets-plane-at-infinity/ {7,3,3} Honeycomb Meets Plane at Infinity] (2014/08/14)
* [[Danny Calegari]], [http://lamington.wordpress.com/2014/03/04/kleinian-a-tool-for-visualizing-kleinian-groups/Kleinian Kleinian, a tool for visualizing Kleinian groups, Geometry and the Imagination] 4 March 2014. [https://web.archive.org/web/20161109004910/http://math.uchicago.edu/~dannyc/papers/kleinian_mtf_Feb_2014.pdf]
 
[[Category:Honeycombs (geometry)3-honeycombs]]
[[Category:Isogonal 3-honeycombs]]
[[Category:Isochoric 3-honeycombs]]
[[Category:Order-8-n 3-honeycombs]]
[[Category:Order-n-3 3-honeycombs]]
[[Category:Regular 3-honeycombs]]