Content deleted Content added
No edit summary |
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
||
(45 intermediate revisions by 12 users not shown) | |||
Line 4:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]s||{{CDD|node_1|3|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 14:
|bgcolor=#efdcc3|Edge figure||[[Triangle|{3}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[
|-
|bgcolor=#efdcc3|Dual||Self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 triangular honeycomb''' (or '''3,
== Geometry==
It has three [[Infinite-order triangular tiling]] {3,
{| class=wikitable width=640
Line 33:
== Related polytopes and honeycombs ==
It is a part of a sequence of regular honeycombs with [[Infinite-order triangular tiling]] [[cell (geometry)|cells]]: {3,
It
It is a part of a sequence of self-dual regular honeycombs: {''p'',∞,''p''}.
{{Clear}}
=== Order-infinite-4 triangular honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=240
Line 46 ⟶ 48:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]s||{{CDD|node_1|3|node|infin|node|4|node}}<BR>{{CDD|node_1|3|node|infin|node|4|node_h0}} = {{CDD|node_1|3|node|split1-ii|nodes}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 56 ⟶ 58:
|bgcolor=#efdcc3|Edge figure||[[square|{4}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-4
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 square honeycomb|{4,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-4 triangular honeycomb''' (or '''3,
It has four [[
{| class=wikitable width=480
Line 73 ⟶ 75:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {3,
{{
=== Order-infinite-5 triangular honeycomb===
Line 83 ⟶ 85:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|5|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 93 ⟶ 95:
|bgcolor=#efdcc3|Edge figure||[[pentagon|{5}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-5
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 pentagonal honeycomb|{5,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 108 ⟶ 110:
|}
{{
===Order-infinite-6 triangular honeycomb===
Line 116 ⟶ 118:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|6|node}}<BR>{{CDD|node_1|3|node|infin|node|6|node_h0}} = {{CDD|node_1|3|node|split1-ii|branch}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 126 ⟶ 128:
|bgcolor=#efdcc3|Edge figure||[[Hexagon|{6}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-6
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 hexagonal honeycomb|{6,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-6 triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 140 ⟶ 142:
|[[File:H3_3i6_UHS_plane_at_infinity.png|240px]]<BR>Ideal surface
|}
{{
===Order-infinite-7 triangular honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=240
!bgcolor=#efdcc3 colspan=2|Order-infinite-7 triangular honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,∞,7}
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|7|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,∞}]] [[File:H2 tiling 23i-4.png|40px]]
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
|-
|bgcolor=#efdcc3|Edge figure||[[Heptagon|{7}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-7 apeirogonal tiling|{∞,7}]] [[File:H2 tiling 27i-4.png|40px]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 heptagonal honeycomb|{7,∞,3}]]
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,∞,7]
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-7 triangular honeycomb''' (or '''3,∞,6 honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {3,∞,7}. It has infinitely many [[infinite-order triangular tiling]], {3,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order triangular tilings existing around each vertex in an ''order-7 apeirogonal tiling'', {∞,7}, [[vertex figure]].
{| class=wikitable
<!--|[[File:Hyperbolic honeycomb 3-i-7 poincare.png|240px]]<BR>[[Poincaré disk model]]-->
|[[File:H3_3i7_UHS_plane_at_infinity.png|240px]]<BR>Ideal surface
|}
{{Clear}}
===Order-infinite-infinite triangular honeycomb===
Line 148 ⟶ 182:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|infin|node}}<BR>{{CDD|node_1|3|node|infin|node|infin|node_h0}} = {{CDD|node_1|3|node|split1-ii|branch|labelinfin}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 158 ⟶ 192:
|bgcolor=#efdcc3|Edge figure||[[Apeirogon|{∞}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Infinite-order
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 apeirogonal honeycomb|{∞,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[∞,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-infinite triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 173 ⟶ 207:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {3,(
{{Clear}}
=== Order-infinite-3 square honeycomb===
{| class="wikitable" align="right" style="margin-left:10px"
Line 182 ⟶ 217:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{4,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|4|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order square tiling|{4,
|-
|bgcolor=#efdcc3|Faces||[[Square|{4}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-4 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[4,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 square honeycomb''' (or '''4,
The [[Schläfli symbol]] of the ''order-infinite-3 square honeycomb'' is {4,
{| class=wikitable
Line 214 ⟶ 249:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{5,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|5|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order pentagonal tiling|{5,
|-
|bgcolor=#efdcc3|Faces||[[Pentagon|{5}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-5 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[5,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 pentagonal honeycomb''' (or '''5,
The [[Schläfli symbol]] of the ''order-6-3 pentagonal honeycomb'' is {5,
{| class=wikitable
Line 245 ⟶ 280:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{6,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|6|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order hexagonal tiling|{6,
|-
|bgcolor=#efdcc3|Faces||[[Hexagon|{6}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-6 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[6,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 hexagonal honeycomb''' (or '''6,
The [[Schläfli symbol]] of the ''order-infinite-3 hexagonal honeycomb'' is {6,
{| class=wikitable
Line 270 ⟶ 305:
|}
{{
=== Order-infinite-3 heptagonal honeycomb===
{| class="wikitable" align="right" style="margin-left:10px"
!bgcolor=#efdcc3 colspan=2|Order-infinite-3 heptagonal honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{7,∞,3}
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|7|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order heptagonal tiling|{7,∞}]] [[File:H2_tiling_27i-4.png|80px]]
|-
|bgcolor=#efdcc3|Faces||[[Heptagon|{7}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[order-3 apeirogonal tiling|{∞,3}]]
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-7 triangular honeycomb|{3,∞,7}]]
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[7,∞,3]
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 heptagonal honeycomb''' (or '''7,∞,3 honeycomb''') a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]). Each infinite cell consists of an [[infinite-order heptagonal tiling]] whose vertices lie on a [[Hypercycle (geometry)|2-hypercycle]], each of which has a limiting circle on the ideal sphere.
The [[Schläfli symbol]] of the ''order-infinite-3 heptagonal honeycomb'' is {7,∞,3}, with three infinite-order heptagonal tilings meeting at each edge. The [[vertex figure]] of this honeycomb is an order-3 apeirogonal tiling, {∞,3}.
{| class=wikitable
<!--|[[File:Hyperbolic honeycomb 7-i-3 poincare.png|240px]]<BR>[[Poincaré disk model]]-->
|[[File:H3_7i3_UHS_plane_at_infinity.png|240px]]<BR>Ideal surface
|}
{{Clear}}
=== Order-infinite-3 apeirogonal honeycomb===
Line 278 ⟶ 346:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|infin|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Faces||[[Apeirogon]] {
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-infinite triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 apeirogonal honeycomb''' (or '''
The [[Schläfli symbol]] of the apeirogonal tiling honeycomb is {
The "ideal surface" projection below is a plane-at-infinity, in the
{| class=wikitable
Line 311 ⟶ 379:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{4,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|4|node|infin|node|4|node}}<BR>{{CDD|node_1|4|node|infin|node|4|node_h0}} = {{CDD|node_1|4|node|split1-ii|nodes}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order square tiling|{4,
|-
|bgcolor=#efdcc3|Faces||[[Square|{4}]]
Line 321 ⟶ 389:
|bgcolor=#efdcc3|Edge figure||[[Square|{4}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-4
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[4,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-4 square honeycomb''' (or '''4,
All vertices are ultra-ideal (existing beyond the ideal boundary) with four [[
{| class=wikitable
Line 338 ⟶ 406:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {4,∞<sup>1,1</sup>}, Coxeter diagram, {{CDD|node_1|4|node|split1-ii|nodes}}, with alternating types or colors of cells. In Coxeter notation the half symmetry is [4,∞,4,1<sup>+</sup>] = [4,∞<sup>1,1</sup>].
{{Clear}}
=== Order-infinite-5 pentagonal honeycomb===
Line 346 ⟶ 416:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{5,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|5|node|infin|node|5|node}}
|-
|bgcolor=#efdcc3|Cells||[[
|-
|bgcolor=#efdcc3|Faces||[[pentagon|{5}]]
Line 356 ⟶ 426:
|bgcolor=#efdcc3|Edge figure||[[pentagon|{5}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-5
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[5,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-5 pentagonal honeycomb''' (or '''5,
All vertices are ultra-ideal (existing beyond the ideal boundary) with five infinite-order pentagonal tilings existing around each edge and with an [[order-5
{| class=wikitable
|[[File:Hyperbolic honeycomb 5-i-5 poincare.png|240px]]<BR>[[Poincaré disk model]]
|[[File:
|}
{{
=== Order-infinite-6 hexagonal honeycomb===
Line 380 ⟶ 450:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{6,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|6|node|infin|node|6|node}}<BR>{{CDD|node_1|6|node|infin|node|6|node_h0}} = {{CDD|node_1|6|node|split1-ii|branch}}
|-
|bgcolor=#efdcc3|Cells||[[
|-
|bgcolor=#efdcc3|Faces||[[hexagon|{6}]]
Line 390 ⟶ 460:
|bgcolor=#efdcc3|Edge figure||[[hexagon|{6}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-6
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[6,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-6 hexagonal honeycomb''' (or '''6,
{| class=wikitable
Line 405 ⟶ 475:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {6,(
{{Clear}}
=== Order-infinite-7 heptagonal honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=280
!bgcolor=#efdcc3 colspan=2|Order-infinite-7 heptagonal honeycomb
|-
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{7,∞,7}
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|7|node|infin|node|7|node}}
|-
|bgcolor=#efdcc3|Cells||[[order-5 heptagonal tiling|{7,∞}]] [[File:H2 tiling 27i-4.png|60px]]
|-
|bgcolor=#efdcc3|Faces||[[heptagon|{7}]]
|-
|bgcolor=#efdcc3|Edge figure||[[heptagon|{7}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-7 apeirogonal tiling|{∞,7}]] [[File:H2 tiling 27i-4.png|40px]]
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[7,∞,7]
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-7 heptagonal honeycomb''' (or '''7,∞,7 honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {7,∞,7}. It has seven [[infinite-order heptagonal tiling]]s, {7,∞}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many heptagonal tilings existing around each vertex in an [[order-7 apeirogonal tiling]] [[vertex figure]].
{| class=wikitable
<!--|[[File:Hyperbolic honeycomb 7-i-7 poincare.png|240px]]<BR>[[Poincaré disk model]]-->
|[[File:H3_7i7_UHS_plane_at_infinity.png|240px]]<BR>Ideal surface
|}
{{
=== Order-infinite-infinite apeirogonal honeycomb ===
Line 433 ⟶ 536:
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-infinite apeirogonal honeycomb''' (or '''∞,∞,∞ honeycomb''') is a regular space-filling [[tessellation]] (or [[honeycomb (geometry)|honeycomb]]) with [[Schläfli symbol]] {∞,∞,∞}. It has infinitely many [[infinite-order apeirogonal tiling]] {∞,∞} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many infinite-order apeirogonal tilings existing around each vertex in an [[infinite-order
{| class=wikitable
|[[File:Hyperbolic honeycomb i-
|[[File:
|}
Line 449 ⟶ 552:
{{reflist}}
*[[H. S. M. Coxeter|Coxeter]], ''[[Regular Polytopes (book)|Regular Polytopes]]'', 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
* ''The Beauty of Geometry: Twelve Essays'' (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space] {{Webarchive|url=https://web.archive.org/web/20160610043106/http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf |date=2016-06-10 }}) Table III
* [[Jeffrey Weeks (mathematician)|Jeffrey R. Weeks]] ''The Shape of Space, 2nd edition'' {{ISBN|0-8247-0709-5}} (Chapters 16–17: Geometries on Three-manifolds I, II)
* George Maxwell, ''Sphere Packings and Hyperbolic Reflection Groups'', JOURNAL OF ALGEBRA 79,
* Hao Chen, Jean-Philippe Labbé, ''Lorentzian Coxeter groups and Boyd-Maxwell ball packings'', (2013)[
* [https://arxiv.org/abs/1511.02851 Visualizing Hyperbolic Honeycombs arXiv:1511.02851] Roice Nelson, Henry Segerman (2015)
==External links==
* [https://www.youtube.com/watch?v=GRo_FQm2KRc Hyperbolic Catacombs Carousel: {3,
*[[John Baez]], ''Visual insights'': [http://blogs.ams.org/visualinsight/2014/08/01/733-honeycomb/ {7,3,3} Honeycomb] (2014/08/01) [http://blogs.ams.org/visualinsight/2014/08/14/733-honeycomb-meets-plane-at-infinity/ {7,3,3} Honeycomb Meets Plane at Infinity] (2014/08/14)
* [[Danny Calegari]], [http://lamington.wordpress.com/2014/03/04/kleinian-a-tool-for-visualizing-kleinian-groups/Kleinian Kleinian, a tool for visualizing Kleinian groups, Geometry and the Imagination] 4 March 2014. [https://web.archive.org/web/20161109004910/http://math.uchicago.edu/~dannyc/papers/kleinian_mtf_Feb_2014.pdf]
[[Category:
|